数学建模25c


一、问题理解与建模目标

  • 目标:找出胎儿Y染色体浓度(因变量)与孕妇孕周数、BMI等指标(自变量)之间的关系,并建立数学模型,检验各变量对Y染色体浓度的影响是否显著。

二、数据预处理

  1. 数据清洗

    • 剔除缺失值、异常值(如测序失败、浓度为0等无效数据)。
    • 对多次检测的孕妇,考虑取均值、最大值或首次检测值,具体可根据实际情况选择。
  2. 变量筛选与构造

    • 主要自变量:孕周数、BMI。
    • 可选自变量:年龄、检测次数、采血时间、胎儿性别等。
    • 对分类变量(如胎儿性别)进行哑变量处理。

三、探索性数据分析(EDA)

  1. 描述性统计
    • 画出Y染色体浓度、孕周数、BMI的分布直方图、箱线图。
  2. 相关性分析
    • 计算Y染色体浓度与各自变量的皮尔逊/斯皮尔曼相关系数。
    • 绘制散点图(Y浓度 vs 孕周数、Y浓度 vs BMI)。

四、关系模型建立

  1. 单变量回归分析

    • 先分别做Y染色体浓度对孕周数、BMI的线性回归,初步判断关系。
  2. 多元线性回归模型

    • 形式:

      Y = \\beta_0 + \\beta_1 \\cdot \\text{孕周数} + \\beta_2 \\cdot \\text{BMI} + \\beta_3 \\cdot \\text{其他变量} + \\epsilon

    • 若变量间有非线性关系,可尝试多项式回归或对数变换。
  3. 模型选择与优化

    • 可用逐步回归、LASSO等方法筛选显著变量。
    • 检查多重共线性(VIF)。

五、显著性检验

  1. 回归系数显著性
    • 检查各回归系数的t检验p值,判断哪些变量对Y染色体浓度有显著影响(p<0.05为显著)。
  2. 模型整体显著性
    • F检验,R²、调整R²评价模型拟合优度。
  3. 残差分析
    • 检查残差正态性、异方差性,确保模型假设成立。

六、结果解释与可视化

  • 解释各变量对Y染色体浓度的影响方向和大小。
  • 可视化回归结果、残差分布等。

七、可选拓展

  • 若数据量大、变量多,可尝试机器学习方法(如随机森林、SVR等)进行建模对比。
  • 若有分组(如不同BMI区间),可分组建模,比较不同组的模型差异。

总结流程图

数据清洗 变量筛选与构造 探索性数据分析 建立回归模型 显著性检验 结果解释与可视化


相关推荐
统计学小王子6 小时前
数模之路获奖总结——数据分析交流(R语言)
数学建模·数据挖掘·数据分析·r语言
MoRanzhi12031 天前
基于 SciPy 的矩阵运算与线性代数应用详解
人工智能·python·线性代数·算法·数学建模·矩阵·scipy
人大博士的交易之路2 天前
今日行情明日机会——20250926
数学建模·数据分析·缠论·缠中说禅·涨停回马枪
泰迪智能科技2 天前
分享“泰迪杯”数据挖掘挑战赛全新升级——赛题精准对标,搭建 “白名单” 赛事进阶通道
人工智能·数学建模·数据挖掘
贝塔实验室3 天前
ADMM 算法的基本概念
算法·数学建模·设计模式·矩阵·动态规划·软件构建·傅立叶分析
文火冰糖的硅基工坊4 天前
[硬件电路-320]:模拟电路与数字电路,两者均使用晶体管(如BJT、MOSFET),但模拟电路利用其线性区,数字电路利用其开关特性。
单片机·嵌入式硬件·数学建模·fpga开发·系统架构·信号处理
小陈爱建模4 天前
[已更新]2025华为杯E题数学建模研赛E题研究生数学建模思路代码文章成品:高速列车轴承智能故障诊断问题
数学建模
一碗白开水一4 天前
【第30话:路径规划】自动驾驶中Hybrid A星(A*)搜索算法的详细推导及代码示例
人工智能·算法·机器学习·计算机视觉·数学建模·自动驾驶
MATLAB代码顾问4 天前
Python实现海鸥优化算法(Seagull Optimization Algorithm, SOA)(附完整代码)
数学建模
CC数学建模4 天前
2025年中国研究生数学建模竞赛“华为杯”C题 围岩裂隙精准识别与三维模型重构完整高质量成品 思路 代码 结果分享!全网首发!
数学建模·重构