卷积神经网络CNN-part5-NiN

卷积神经网络CNN-part4-VGG-CSDN博客

摘要:本文介绍了网络中的网络(NiN)结构,对比了AlexNet、VGG等经典CNN架构。NiN采用多层1x1卷积替代全连接层,通过NiN块(普通卷积+两个1x1卷积)构建网络,显著减少参数量。文中详细给出了NiN块和网络的PyTorch实现代码,展示了各层输出维度变化,并进行了Fashion-MNIST数据集训练。最后对比分析了不同CNN网络的内部结构特点,指出NiN在减少参数方面的优势,但也可能增加训练时间。

0. 前言

深度学习网络我们前面讲了AlexNet和VGG,AlexNet将神经网络的层数进行了扩张,使用多个卷积层和多个全连接层提取数据特征。VGG提出了块的结构给研究人员提供了一种设计网络的新结构,即通过不同块的组合来构建深度神经网络。Network in Network提供了另外一种思路,即抛开了可能丢失对象特征的全连接层,只通过卷积层和聚集层来构建网络。如下图所示。

仔细看图中内容,我们发现NiN单个块就相当于卷积MLP(多层感知机),即多层感知机作为单独模块传递,总网络是由多个卷积MLP构成的网络,所以称之为网络中的网络。

1. NiN(Network In Network)

1.1NiN块

我们这里构建的NiN块是以一个普通卷积层开始,再增加两个1x1的卷积层。这两个卷积层充当带有ReLU激活函数的逐像素全连接层。

python 复制代码
def nin_block(in_channel, out_channel, kernel_size, stride, padding):
    return nn.Sequential(
        nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding=padding),
        nn.ReLU(),
        nn.Conv2d(out_channel, out_channel, kernel_size=1),nn.ReLU(),
        nn.Conv2d(out_channel, out_channel, kernel_size=1),nn.ReLU()
    )

1.2NiN网络

NiN网络是在AlexNet后不久提出的。NiN使用窗口形状为11x11、5x5和3x3的卷积层,输出通道数与AlexNet相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为3x3,步幅为2。

NiN的特点是显著减少了模型所需参数的数量。当然,在实践中,这种设计有时会增加训练模型的时间。

python 复制代码
net = nn.Sequential(
    nin_block(1,96,kernel_size=11,stride=4,padding=0),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(96,256,kernel_size=5,stride=1,padding=2),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(256,384,kernel_size=3,stride=1,padding=1),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Dropout2d(0.5),
    #标签类别数是10
    nin_block(384,10,kernel_size=3,stride=1,padding=1),
    nn.AdaptiveAvgPool2d((1,1)),
    #将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten()
)

我们来查看以下每个块的输出形状。

python 复制代码
X=torch.rand(size=(1,1,224,224))
for layer in net:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

输出:

第一个NiN块: Sequential output shape: torch.Size([1, 96, 54, 54])

第一个最大汇聚层: MaxPool2d output shape: torch.Size([1, 96, 26, 26])

第二个NiN块: Sequential output shape: torch.Size([1, 256, 26, 26])

第二个最大汇聚层: MaxPool2d output shape: torch.Size([1, 256, 12, 12])

第三个NiN块: Sequential output shape: torch.Size([1, 384, 12, 12])

第三个最大汇聚层: MaxPool2d output shape: torch.Size([1, 384, 5, 5])

丢弃层: Dropout2d output shape: torch.Size([1, 384, 5, 5])

第四个NiN块: Sequential output shape: torch.Size([1, 10, 5, 5])

全局平均汇聚层: AdaptiveAvgPool2d output shape: torch.Size([1, 10, 1, 1])

输出层: Flatten output shape: torch.Size([1, 10])

2. 训练

python 复制代码
#数据集获取
lr,num_epochs,batch_size = 0.1,10,128
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size, resize=224)
#训练
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())

3.各网络对比

3.1内部构成对比

相关推荐
曾经的三心草20 小时前
Python14-SVM⽀持向量机
人工智能·机器学习·支持向量机
用户51914958484520 小时前
Chrome在Android上Speedometer性能翻倍的技术揭秘
人工智能·aigc
BigData共享20 小时前
Paimon系列:主键表之合并引擎merge-engine
数据库·人工智能
说私域20 小时前
微商本地化发展模式的借鉴与探讨——以开源AI智能名片链动2+1模式S2B2C商城小程序为例
人工智能·小程序·开源
算家云20 小时前
化学专业大型语言模型——SparkChemistry-X1-13B本地部署教程:洞察分子特性,精准预测化学行为
人工智能·语言模型·自然语言处理·算家云·镜像社区·化学专业大模型·sparkchemistry
javastart20 小时前
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型
人工智能·开源·aigc
掘金一周21 小时前
🍏让前端去做 iPhone 的液态玻璃❓ | 掘金一周 10.2
前端·人工智能·后端
即兴小索奇21 小时前
别了GPT-4系列!推理模型正在终结大语言模型时代
人工智能
小红21 小时前
网络通信核心协议详解:从ARP到TCP三次握手与四次挥手
前端·神经网络
KKKlucifer21 小时前
GPT-4 赋能恶意软件 GPT-MalPro:国内首现动态生成规避检测的勒索程序技术深度解析
大数据·人工智能·gpt