基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用

随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。最近借助深度学习方法,基于卷积神经网络的无人机目标识别取得了令人印象深刻的结果。深度卷积网络采用"端对端"的特征学习,通过多层的特征抽取,它揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,这也是其在无人机影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,以PyTorch等为主体的深度学习平台也为使用卷积神经网络提供了程序框架。然而卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度大,各类深度学习平台的掌握也并不容易。

相关推荐
星期天要睡觉5 分钟前
深度学习——循环神经网络(RNN)
人工智能·python·rnn·深度学习·神经网络
Blossom.11826 分钟前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
java1234_小锋1 小时前
TensorFlow2 Python深度学习 - 循环神经网络(LSTM)示例
python·rnn·深度学习·tensorflow2
Costrict1 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
tt5555555555552 小时前
从RNN到Transformer:深度学习架构革命
rnn·深度学习·transformer
zenRRan3 小时前
用中等难度prompt做高效post training
人工智能·深度学习·机器学习·计算机视觉·prompt
java1234_小锋7 小时前
TensorFlow2 Python深度学习 - 循环神经网络(SimpleRNN)示例
python·深度学习·tensorflow·tensorflow2
java1234_小锋7 小时前
TensorFlow2 Python深度学习 - 通俗理解池化层,卷积层以及全连接层
python·深度学习·tensorflow·tensorflow2
Psycho_MrZhang8 小时前
自定义层和读写文件
pytorch·python·深度学习
哥布林学者9 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(三)
深度学习·ai