pytorch基本运算-torch.normal()函数生成的随机数据添加噪声

【1】引言

前序学习进程中,已经学习了https://blog.csdn.net/weixin_44855046/article/details/148383432?spm=1001.2014.3001.5502,掌握了一些基本运算方法。

此外也学习了使用PyTorch模块的normal()函数绘制正态分布函数图,掌握了torch.normal()函数生成正态分布随机数的基本技巧。

今天的学习任务就是将两种计算方法结合起来,顺路学习一个强大的新函数torch.matmul()。

【2】矩阵运算

前序学习已经知道:

  • hadamard积是元素对位相乘,用"*"连接张量
  • 点积是元素对位相乘后再求和,用"torch.sum(*)"连接张量,
  • 矩阵乘法是第一个矩阵的第i行与第二个矩阵第j列相乘的效果,用"torch.mm()"连接矩阵,就是大家所熟悉的线性代数中得矩阵乘法,
  • torch.normal()函数生成正态分布随机数。

然后我们尝试写一段代码:

python 复制代码
# 引入模块
import matplotlib.pyplot as plt
import torch
from matplotlib.pyplot import subplots
from sympy.abc import alpha

# 定义随机数数量
n_features=3000
# 生成随机数
w=torch.tensor([1,2]).float()
print(len(w))
x=torch.normal(0,1,(n_features,len(w)))
n=torch.normal(0,0.01,(n_features,))

这段代码的作用是,生成一不同的随机数,这里取len(w)有一个小细节:

当w是1行多列的数据形式时,len(w)=列数;当w是多行多列的数据形式时,len(w)=行数。

此时就会输出不同维度数的x,n是最为常规的正态分布随机数,可以理解为一个行向量。

然后展开计算:

python 复制代码
# 随机数计算
c=2*x
d=torch.matmul(x,w)+n
print('d=',d)

这里使用了torch.matmul(x,w)函数,之所以说torch.matmul(x,w)函数很强大,是因为这个函数可以自动根据x和w的维度自行选择计算方法:

如果两个二维张量满足常规矩阵计算方法的维度,它们就会按照常规矩阵乘法的计算法则计算;

如果两个二维张量不满足常规矩阵计算方法的维度,它们会先自动广播,然后按照常规矩阵乘法的计算法则计算;

如果两个一维张量相乘,它们会按照元素对位相乘后叠加,类似于"torch.sum(*);

其他的暂时不学,用到了再说,总之就是很灵活。

这里定义的x张量的列数和w的行数相等,每行数据是[x1,x2],所以会按照每行数据x1w1+x2w2+n的方式计算。

然后输出图像就可以:

python 复制代码
# 绘制综合效果
fig,ax=subplots(3,1)
ax[0].scatter(x[:,(0)],d.flatten())
ax[1].hist(d.flatten(),bins=50,color='blue',alpha=0.5)
ax[2].plot(x[:,(1)],d.flatten(),color='blue',alpha=0.5)
plt.grid(True)
plt.show()

代码运行效果为:

此时的完整代码为:

python 复制代码
# 引入模块
import matplotlib.pyplot as plt
import torch
from matplotlib.pyplot import subplots
from sympy.abc import alpha

# 定义随机数数量
n_features=3000
# 生成随机数
w=torch.tensor([1,2]).float()
print(len(w))
x=torch.normal(0,1,(n_features,len(w)))
n=torch.normal(0,0.01,(n_features,))

# 随机数计算
c=2*x
d=torch.matmul(x,w)+n
print('d=',d)

# 绘制综合效果
fig,ax=subplots(3,1)
ax[0].scatter(x[:,(0)],d.flatten())
ax[1].hist(d.flatten(),bins=50,color='blue',alpha=0.5)
ax[2].plot(x[:,(1)],d.flatten(),color='blue',alpha=0.5)
plt.grid(True)
plt.show()

【3】总结

学习了torch.normal()函数生成的随机数据,再对随机数据使用torch.matmul(x,w)函数进行张量计算和添加噪声的基本操作。

相关推荐
2301_818730562 小时前
transformer(上)
人工智能·深度学习·transformer
一晌小贪欢2 小时前
Python 爬虫进阶:如何利用反射机制破解常见反爬策略
开发语言·爬虫·python·python爬虫·数据爬虫·爬虫python
久邦科技2 小时前
奈飞工厂中文官网入口,影视在线观看|打不开|电脑版下载
学习
木枷2 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
躺平大鹅2 小时前
5个实用Python小脚本,新手也能轻松实现(附完整代码)
python
m0_563745112 小时前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
yukai080082 小时前
【最后203篇系列】039 JWT使用
python
好好学习天天向上~~2 小时前
6_Linux学习总结_自动化构建
linux·学习·自动化
恣逍信点2 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘2 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频