pytorch基本运算-torch.normal()函数生成的随机数据添加噪声

【1】引言

前序学习进程中,已经学习了https://blog.csdn.net/weixin_44855046/article/details/148383432?spm=1001.2014.3001.5502,掌握了一些基本运算方法。

此外也学习了使用PyTorch模块的normal()函数绘制正态分布函数图,掌握了torch.normal()函数生成正态分布随机数的基本技巧。

今天的学习任务就是将两种计算方法结合起来,顺路学习一个强大的新函数torch.matmul()。

【2】矩阵运算

前序学习已经知道:

  • hadamard积是元素对位相乘,用"*"连接张量
  • 点积是元素对位相乘后再求和,用"torch.sum(*)"连接张量,
  • 矩阵乘法是第一个矩阵的第i行与第二个矩阵第j列相乘的效果,用"torch.mm()"连接矩阵,就是大家所熟悉的线性代数中得矩阵乘法,
  • torch.normal()函数生成正态分布随机数。

然后我们尝试写一段代码:

python 复制代码
# 引入模块
import matplotlib.pyplot as plt
import torch
from matplotlib.pyplot import subplots
from sympy.abc import alpha

# 定义随机数数量
n_features=3000
# 生成随机数
w=torch.tensor([1,2]).float()
print(len(w))
x=torch.normal(0,1,(n_features,len(w)))
n=torch.normal(0,0.01,(n_features,))

这段代码的作用是,生成一不同的随机数,这里取len(w)有一个小细节:

当w是1行多列的数据形式时,len(w)=列数;当w是多行多列的数据形式时,len(w)=行数。

此时就会输出不同维度数的x,n是最为常规的正态分布随机数,可以理解为一个行向量。

然后展开计算:

python 复制代码
# 随机数计算
c=2*x
d=torch.matmul(x,w)+n
print('d=',d)

这里使用了torch.matmul(x,w)函数,之所以说torch.matmul(x,w)函数很强大,是因为这个函数可以自动根据x和w的维度自行选择计算方法:

如果两个二维张量满足常规矩阵计算方法的维度,它们就会按照常规矩阵乘法的计算法则计算;

如果两个二维张量不满足常规矩阵计算方法的维度,它们会先自动广播,然后按照常规矩阵乘法的计算法则计算;

如果两个一维张量相乘,它们会按照元素对位相乘后叠加,类似于"torch.sum(*);

其他的暂时不学,用到了再说,总之就是很灵活。

这里定义的x张量的列数和w的行数相等,每行数据是[x1,x2],所以会按照每行数据x1w1+x2w2+n的方式计算。

然后输出图像就可以:

python 复制代码
# 绘制综合效果
fig,ax=subplots(3,1)
ax[0].scatter(x[:,(0)],d.flatten())
ax[1].hist(d.flatten(),bins=50,color='blue',alpha=0.5)
ax[2].plot(x[:,(1)],d.flatten(),color='blue',alpha=0.5)
plt.grid(True)
plt.show()

代码运行效果为:

此时的完整代码为:

python 复制代码
# 引入模块
import matplotlib.pyplot as plt
import torch
from matplotlib.pyplot import subplots
from sympy.abc import alpha

# 定义随机数数量
n_features=3000
# 生成随机数
w=torch.tensor([1,2]).float()
print(len(w))
x=torch.normal(0,1,(n_features,len(w)))
n=torch.normal(0,0.01,(n_features,))

# 随机数计算
c=2*x
d=torch.matmul(x,w)+n
print('d=',d)

# 绘制综合效果
fig,ax=subplots(3,1)
ax[0].scatter(x[:,(0)],d.flatten())
ax[1].hist(d.flatten(),bins=50,color='blue',alpha=0.5)
ax[2].plot(x[:,(1)],d.flatten(),color='blue',alpha=0.5)
plt.grid(True)
plt.show()

【3】总结

学习了torch.normal()函数生成的随机数据,再对随机数据使用torch.matmul(x,w)函数进行张量计算和添加噪声的基本操作。

相关推荐
胖头鱼的鱼缸(尹海文)19 分钟前
数据库管理-第376期 Oracle AI DB 23.26新特性一览(20251016)
数据库·人工智能·oracle
瑞禧生物ruixibio23 分钟前
4-ARM-PEG-Pyrene(2)/Biotin(2),多功能化聚乙二醇修饰荧光标记生物分子的设计与应用探索
arm开发·人工智能
大千AI助手27 分钟前
Huber损失函数:稳健回归的智慧之选
人工智能·数据挖掘·回归·损失函数·mse·mae·huber损失函数
墨利昂38 分钟前
10.17RNN情感分析实验:加载预训练词向量模块整理
人工智能·rnn·深度学习
【建模先锋】42 分钟前
一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
人工智能·lstm·ceemdan·预测模型·风速预测·时间序列预测模型
qiuiuiu41343 分钟前
正点原子RK3568学习日志12-注册字符设备
linux·开发语言·单片机·学习·ubuntu
fsnine1 小时前
YOLOv2原理介绍
人工智能·计算机视觉·目标跟踪
倔强的石头1061 小时前
AI修图革命:IOPaint+cpolar让废片拯救触手可及
人工智能·cpolar·iopaint
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-15]:大模型典型产品对比 - 数字人
人工智能·大模型·大语言模型
这里有鱼汤1 小时前
📊量化实战篇:如何计算RSI指标的“拥挤度指标”?
后端·python