深度学习基本函数

1、softmax归一化函数

把模型输出的score转换为概率,并且通过指数运算,放大了score之间的差距

python 复制代码
#在pytorch中这样引用
import torch
import torch.nn.functional as F

scores = torch.tensor([3.2, 1.3, 0.2])
print(F.softmax(scores, dim=0))
# 输出: tensor([0.8338, 0.1247, 0.0415])

# 原始算法如下
import numpy as np
a=np.array([1,2,3])

exp2=np.exp(a)
print(exp2/np.sum(exp2)) # [0.09003057 0.24472847 0.66524096]

print(np.max(a))  # 3
print(a-np.max(a)) # [-2 -1  0]
exp=np.exp(a-np.max(a))  # 减去最大值防止数值爆炸
print(exp) # [0.13533528 0.36787944 1.        ]
print(exp/np.sum(exp))  # [0.09003057 0.24472847 0.66524096]

2、损失函数

模型输出 :预测概率分布(例如,通过 Softmax 得到 [0.834, 0.125, 0.041]

真实情况 :真实标签的分布(例如,图片真实是"猫",我们用 one-hot 编码表示为 [1, 0, 0]

交叉熵计算过程:

H(P,Q)=−[P(猫)⋅log⁡(Q(猫))+P(狗)⋅log⁡(Q(狗))+P(兔子)⋅log⁡(Q(兔子))]

=−[(1)⋅log⁡(0.834)+(0)⋅log⁡(0.125)+(0)⋅log⁡(0.041)]

=−[log⁡(0.834)+0+0]

=−log⁡(0.834)

python 复制代码
#使用pytorch计算
import torch
import torch.nn as nn

# 定义损失函数
criterion = nn.CrossEntropyLoss()
outputs = torch.tensor([[3.2, 1.3, 0.2]]) 
labels = torch.tensor([0])

# 计算损失
loss = criterion(outputs, labels)
print(loss)


#手工这样计算
import numpy as np
a=np.array([3.2, 1.3, 0.2])
s=np.exp(a)/np.sum(np.exp(a))
print(-1*np.log(s[0]))

不同的任务,选择不同的损失函数,常见的

分类任务 :首选交叉熵

回归任务 :首选MSEMAE(MSE更常用,若数据有较多离群点可考虑MAE)。

相关推荐
whitelbwwww11 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785019 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
颜颜yan_28 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode40 分钟前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
aaaa_a1331 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian2 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray2 小时前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
子非鱼9212 小时前
3 传统序列模型——RNN
人工智能·rnn·深度学习