TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测Matlab实现

基本介绍

1.Matlab实现TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测,运行环境Matlab2023b及以上;

2.excel数据,方便替换,可在下载区获取数据和程序内容;

3.图很多,包括分类效果图,混淆矩阵图;

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

6.data为数据集,输入多个特征,分四类,分类效果如下:

注:程序和数据放在一个文件夹



matlab 复制代码
部分源码


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  读取数据
res = xlsread('data.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行


%%  导入数据
res = xlsread('数据集.xlsx');               % 四个类别分别用0 1 2 3表示
rand('state',0);

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例 
outdim = 1;                                  % 最后一列为输出
num_class = length(unique(res(:,end)));      % 计算类别数 
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

%%  矩阵转置
p_train = P_train'; p_test = P_test';
t_train = T_train'; t_test = T_test';

完整源码私信TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测Matlab实现

相关推荐
深度学习实战训练营9 小时前
TransUNet:Transformer 成为医学图像分割的强大编码器,Transformer 编码器 + U-Net 解码器-k学长深度学习专栏
人工智能·深度学习·transformer
@鱼香肉丝没有鱼13 小时前
Transformer底层原理—位置编码
人工智能·深度学习·transformer·位置编码
Piar1231sdafa13 小时前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
拉姆哥的小屋14 小时前
【深度学习实战】基于CyclePatch框架的电池寿命预测:从NASA数据集到Transformer模型的完整实现
人工智能·深度学习·transformer
高洁0115 小时前
一文了解图神经网络
人工智能·python·深度学习·机器学习·transformer
心疼你的一切17 小时前
计算机视觉_CNN与目标检测实战
人工智能·神经网络·目标检测·计算机视觉·cnn
心疼你的一切18 小时前
自然语言处理_NLP与Transformer架构
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·transformer
Robot侠18 小时前
极简LLM入门指南 8
llm·transformer·提示工程·multi-modal llm
Piar1231sdafa19 小时前
智能拖拉机目标检测:改进Faster R-CNN的实践与优化
目标检测·r语言·cnn
星环之光2 天前
关于CNN(卷积神经网络)
人工智能·神经网络·cnn