提示词(Prompt)工程与推理优化

一、提示词工程

为什么需要提示词工程?

大模型本身没有意识、没有目标,它只是在基于它训练过的海量数据,进行"下一个词"的概率预测。大模型并不是完美的"自动智能",它的输出高度依赖你如何向它提问。

核心原因:

  1. 提供上下文和目标:告诉模型"我们现在要做什么"。
  2. 激活特定知识:从模型的庞杂知识库中调取相关部分。(扮演不同的角色)
  3. 约束和引导输出:确保结果符合我们的格式、风格和质量要求。
  4. 解锁复杂推理:通过分步指令解决难题

大模型与智能体的区别

维度 大模型 智能体
本质 一个模型,是核心引擎 一个系统/架构, 是完整实体
角色 大脑(思考与知识) 完整的人或机器人(感知-思考-行动)
工作方式 被动响应:根据输入提示生成输出 主动规划:为实现目标而自主采取一系列行动
核心能力 语言理解、内容生成、知识问答 任务分解、工具调用、顺序决策、与环境交互
构成 主要是神经网络模型本身 = 大模型 + 规划器 + 工具集 + 记忆模块
目标性 无内在目标,目标由用户的提示词定义 有明确的任务目标,并自主追求目标的达成
依赖性 可以独立存在和提供服务 通常依赖于大模型作为其「大脑」来进行推理和决策

提示工程可以做什么?

提示工程是指设计和优化"提示(Prompt)"以引导大模型输出符合预期结果的技术。比如,你希望 GPT 写一篇新闻稿、生成代码、做数学推理,你需要构造高质量的提示。

二、提示工程的内容

1.提示词的基本要素

  1. 角色(Role)
  2. 背景(Background)
  3. (Attention)
  4. 限制(Constrains)
  5. 定义(Definition)
  6. 任务/目标(Goal)
  7. 技能(Skills)
  8. 工作流程(Workflows)
  9. 输出格式(OutputFormat)
  10. 例子(Example)
  11. 初始化(Initialization)

2.提示词技术与技巧

  1. 零样本提示
  • 描述: 不提供任何示例,直接给模型下达指令。依赖模型自身的知识储备和推理能力。
  • 示例: "解释什么是量子计算。"
  1. 少样本提示
  • 描述: 在提示词中提供少量(通常为1-5个)输入-输出示例。这是引导模型学会复杂任务或特定格式的最强大技巧之一。
  1. 思维链
  • 描述: 对于复杂的逻辑或数学问题,在提示中要求模型"一步一步地思考"或展示其推理过程。这能显著提高最终答案的准确性。

  • 示例:

    "小明有5个苹果,吃了2个,又买了3个。他现在有几个?让我们一步步推理。"

    模型输出: "一开始有5个,吃了2个后剩下 5-2=3个。又买了3个,所以现在有 3+3=6个。因此,小明现在有6个苹果。"

  1. 角色扮演
  • 描述: 让模型扮演一个特定角色(如专家、历史人物、虚构角色),使其回答更具专业性或符合特定视角。
  • 示例: "假如你是苏格拉底,请谈谈你对人工智能的看法。"
  1. 分隔符与格式清晰
  • 描述: 使用明确的标记(如###, """, ---, XML标签等)来区分提示中的不同部分(如指令、上下文、输入数据),防止模型混淆。

三,专业的提示词框架

(待补充)

相关推荐
迅筑科技-RPT12 小时前
达索系统第7代解决方案3D UNIV+RSES——释放企业数据潜能,拥抱更值得信赖的工业AI
3d·ai·达索系统·迅筑科技·3d univ+rses
ar012313 小时前
AR远程协助作用
人工智能·ar
北京青翼科技13 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航14 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授15 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪15 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴061615 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor15 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES16 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr678916 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养