LangChain1.0智能体开发:长期记忆

阅读本文您将获得:

  • LangChain长期记忆store的实现
  • LangGraph持久化功能的存储结构
  • 智能体使用工具读取长期记忆
  • 智能体使用工具写入长期记忆

1、概述

LangChain智能体借助LangGraph的持久化功能实现长期记忆。LangChain长期记忆属于高阶的主题,使用时需具备LangGraph相关知识。

2、记忆存储

LangGraph将长期记忆以JSON文档的形式存储在存储系统中。 每个记忆都归属于一个自定义命名空间(类似文件夹),并对应一个唯一键(类似文件名)。命名空间中通常包含用户ID、组织ID或其他标识,这些信息能让记忆的整理更便捷。 这种结构支持对记忆进行层级化组织,同时可通过内容筛选器实现跨命名空间检索。

python 复制代码
from langgraph.store.memory import InMemoryStore

def embed(texts: list[str]) -> list[list[float]]:
    # Replace with an actual embedding function or LangChain embeddings object
    return [[1.0, 2.0] * len(texts)]

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production use.
store = InMemoryStore(index={"embed": embed, "dims": 2}) 
user_id = "my-user"
application_context = "chitchat"
namespace = (user_id, application_context) 
store.put( 
    namespace,
    "a-memory",
    {
        "rules": [
            "User likes short, direct language",
            "User only speaks English & python",
        ],
        "my-key": "my-value",
    },
)
# get the "memory" by ID
item = store.get(namespace, "a-memory") 
# search for "memories" within this namespace, filtering on content equivalence, sorted by vector similarity
items = store.search( 
    namespace, filter={"my-key": "my-value"}, query="language preferences"
)

3、在工具中读取长期记忆

python 复制代码
from dataclasses import dataclass
from langchain_core.runnables import RunnableConfig
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime
from langgraph.store.memory import InMemoryStore

@dataclass
class Context:
    user_id: str

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production.
store = InMemoryStore() 

# Write sample data to the store using the put method
store.put( 
    ("users",),  # Namespace to group related data together (users namespace for user data)
    "user_123",  # Key within the namespace (user ID as key)
    {
        "name": "John Smith",
        "language": "English",
    }  # Data to store for the given user
)

@tool
def get_user_info(runtime: ToolRuntime[Context]) -> str:
    """Look up user info."""
    # Access the store - same as that provided to `create_agent`
    store = runtime.store 
    user_id = runtime.context.user_id
    # Retrieve data from store - returns StoreValue object with value and metadata
    user_info = store.get(("users",), user_id) 
    return str(user_info.value) if user_info else "Unknown user"

agent = create_agent(
    model="claude-sonnet-4-5-20250929",
    tools=[get_user_info],
    # Pass store to agent - enables agent to access store when running tools
    store=store, 
    context_schema=Context
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "look up user information"}]},
    context=Context(user_id="user_123") 
)

4、在工具中写入长期记忆

python 复制代码
from dataclasses import dataclass
from typing_extensions import TypedDict
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime
from langgraph.store.memory import InMemoryStore

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production.
store = InMemoryStore() 

@dataclass
class Context:
    user_id: str

# TypedDict defines the structure of user information for the LLM
class UserInfo(TypedDict):
    name: str

# Tool that allows agent to update user information (useful for chat applications)
@tool
def save_user_info(user_info: UserInfo, runtime: ToolRuntime[Context]) -> str:
    """Save user info."""
    # Access the store - same as that provided to `create_agent`
    store = runtime.store 
    user_id = runtime.context.user_id 
    # Store data in the store (namespace, key, data)
    store.put(("users",), user_id, user_info) 
    return "Successfully saved user info."

agent = create_agent(
    model="claude-sonnet-4-5-20250929",
    tools=[save_user_info],
    store=store, 
    context_schema=Context
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "My name is John Smith"}]},
    # user_id passed in context to identify whose information is being updated
    context=Context(user_id="user_123") 
)

# You can access the store directly to get the value
store.get(("users",), "user_123").value
相关推荐
m0_7155753412 分钟前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
甄心爱学习14 分钟前
【leetcode】判断平衡二叉树
python·算法·leetcode
bryceZh14 分钟前
Agent-Skills使用指南
agent·cursor
孤舟晓月16 分钟前
Langchain 1.0后astream_events事件类型及生命周期简析
langchain·大模型·langgraph
深蓝电商API17 分钟前
滑块验证码破解思路与常见绕过方法
爬虫·python
Ulyanov19 分钟前
Pymunk物理引擎深度解析:从入门到实战的2D物理模拟全攻略
python·游戏开发·pygame·物理引擎·pymunk
sensen_kiss31 分钟前
INT303 Coursework1 爬取影视网站数据(如何爬虫网站数据)
爬虫·python·学习
玄同7651 小时前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding
Yorlen_Zhang1 小时前
Python Tkinter Text 控件完全指南:从基础编辑器到富文本应用
开发语言·python·c#
HAPPY酷1 小时前
C++ 和 Python 的“容器”对决:从万金油到核武器
开发语言·c++·python