LangChain1.0智能体开发:长期记忆

阅读本文您将获得:

  • LangChain长期记忆store的实现
  • LangGraph持久化功能的存储结构
  • 智能体使用工具读取长期记忆
  • 智能体使用工具写入长期记忆

1、概述

LangChain智能体借助LangGraph的持久化功能实现长期记忆。LangChain长期记忆属于高阶的主题,使用时需具备LangGraph相关知识。

2、记忆存储

LangGraph将长期记忆以JSON文档的形式存储在存储系统中。 每个记忆都归属于一个自定义命名空间(类似文件夹),并对应一个唯一键(类似文件名)。命名空间中通常包含用户ID、组织ID或其他标识,这些信息能让记忆的整理更便捷。 这种结构支持对记忆进行层级化组织,同时可通过内容筛选器实现跨命名空间检索。

python 复制代码
from langgraph.store.memory import InMemoryStore

def embed(texts: list[str]) -> list[list[float]]:
    # Replace with an actual embedding function or LangChain embeddings object
    return [[1.0, 2.0] * len(texts)]

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production use.
store = InMemoryStore(index={"embed": embed, "dims": 2}) 
user_id = "my-user"
application_context = "chitchat"
namespace = (user_id, application_context) 
store.put( 
    namespace,
    "a-memory",
    {
        "rules": [
            "User likes short, direct language",
            "User only speaks English & python",
        ],
        "my-key": "my-value",
    },
)
# get the "memory" by ID
item = store.get(namespace, "a-memory") 
# search for "memories" within this namespace, filtering on content equivalence, sorted by vector similarity
items = store.search( 
    namespace, filter={"my-key": "my-value"}, query="language preferences"
)

3、在工具中读取长期记忆

python 复制代码
from dataclasses import dataclass
from langchain_core.runnables import RunnableConfig
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime
from langgraph.store.memory import InMemoryStore

@dataclass
class Context:
    user_id: str

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production.
store = InMemoryStore() 

# Write sample data to the store using the put method
store.put( 
    ("users",),  # Namespace to group related data together (users namespace for user data)
    "user_123",  # Key within the namespace (user ID as key)
    {
        "name": "John Smith",
        "language": "English",
    }  # Data to store for the given user
)

@tool
def get_user_info(runtime: ToolRuntime[Context]) -> str:
    """Look up user info."""
    # Access the store - same as that provided to `create_agent`
    store = runtime.store 
    user_id = runtime.context.user_id
    # Retrieve data from store - returns StoreValue object with value and metadata
    user_info = store.get(("users",), user_id) 
    return str(user_info.value) if user_info else "Unknown user"

agent = create_agent(
    model="claude-sonnet-4-5-20250929",
    tools=[get_user_info],
    # Pass store to agent - enables agent to access store when running tools
    store=store, 
    context_schema=Context
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "look up user information"}]},
    context=Context(user_id="user_123") 
)

4、在工具中写入长期记忆

python 复制代码
from dataclasses import dataclass
from typing_extensions import TypedDict
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime
from langgraph.store.memory import InMemoryStore

# InMemoryStore saves data to an in-memory dictionary. Use a DB-backed store in production.
store = InMemoryStore() 

@dataclass
class Context:
    user_id: str

# TypedDict defines the structure of user information for the LLM
class UserInfo(TypedDict):
    name: str

# Tool that allows agent to update user information (useful for chat applications)
@tool
def save_user_info(user_info: UserInfo, runtime: ToolRuntime[Context]) -> str:
    """Save user info."""
    # Access the store - same as that provided to `create_agent`
    store = runtime.store 
    user_id = runtime.context.user_id 
    # Store data in the store (namespace, key, data)
    store.put(("users",), user_id, user_info) 
    return "Successfully saved user info."

agent = create_agent(
    model="claude-sonnet-4-5-20250929",
    tools=[save_user_info],
    store=store, 
    context_schema=Context
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "My name is John Smith"}]},
    # user_id passed in context to identify whose information is being updated
    context=Context(user_id="user_123") 
)

# You can access the store directly to get the value
store.get(("users",), "user_123").value
相关推荐
dyxal8 分钟前
Python包导入终极指南:子文件如何成功调用父目录模块
开发语言·python
nnerddboy10 分钟前
解决传统特征波段选择的不可解释性:2. SHAP和LIME
python·机器学习
电商API&Tina11 分钟前
【电商API接口】关于电商数据采集相关行业
java·python·oracle·django·sqlite·json·php
weixin_4215850130 分钟前
解释代码:val_pred = vxm_model.predict(val_input)--与tensor对比
python
xwill*35 分钟前
python 字符串拼接
linux·windows·python
superman超哥1 小时前
仓颉锁竞争优化深度解析
c语言·开发语言·c++·python·仓颉
一晌小贪欢1 小时前
【Python办公自动化】Python办公自动化常用库新手指南
开发语言·python·python自动化办公·python3·python办公自动化·python办公
其美杰布-富贵-李1 小时前
Python 反射完整学习笔记
笔记·python·学习·反射
热心市民小刘05051 小时前
12.23二叉树的层序遍历
python
yaoh.wang1 小时前
力扣(LeetCode) 111: 二叉树的最小深度 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·深度优先