【码道初阶】一道经典的简单题:Boyer-Moore 多数投票算法|多数元素问题(LeetCode 169)

多数元素问题是算法题中的经典题型:给定一个长度为 n 的数组,其中一个元素出现次数 大于 n/2,需要在线性时间、常数空间内找出它。

例:

复制代码
输入: [2,2,1,1,1,2,2]
输出: 2

题目保证多数元素一定存在。


核心思想:成对抵消,剩者为王

如果一个元素的出现次数超过一半,那么在与其它所有元素进行"成对抵消"后,它必然能够存活下来。

Boyer--Moore 投票算法正是基于这个思想:

  • 遍历数组时维护两个量:

    • candidate:当前候选人

    • count:候选人的净票数

对每个数字 num

  1. count == 0,将候选人设为 num

  2. num == candidatecount++(支持票)。

  3. 否则 count--(反对票,抵消一张支持)。

因为多数元素的票多于其它所有元素的总和,因此不可能被完全抵消,最终留下的 candidate 就是多数元素。


Java 代码(O(n) 时间 + O(1) 空间)

复制代码
class Solution {
    public int majorityElement(int[] nums) {
        int candidate = 0;
        int count = 0;

        for (int num : nums) {
            if (count == 0) {
                candidate = num;
                count = 1;
            } else if (num == candidate) {
                count++;
            } else {
                count--;
            }
        }

        return candidate;
    }
}

为什么算法有效?

把数组看作"选举":

  • 多数元素拥有超过半数的票,无法被其它元素完全抵消。

  • 抵消完所有成对元素后,剩下的一定就是多数元素。

整个过程只需一次遍历(线性时间),并且使用常量额外空间,非常高效。


总结

多数投票算法是一种优雅且高效的线性时间算法:

  • 时间复杂度:O(n)

  • 空间复杂度:O(1)

  • 适用条件:多数元素保证存在

这是算法面试中极其常见的模板技巧,与"异或消对法"(如 LeetCode 136)一起,是必备基础工具。

如果你理解了"成对抵消、剩者为王"的直觉,这道题就再也不会忘记。

相关推荐
源代码•宸7 小时前
大厂技术岗面试之谈薪资
经验分享·后端·面试·职场和发展·golang·大厂·职级水平的薪资
马猴烧酒.8 小时前
【面试八股|JVM虚拟机】JVM虚拟机常考面试题详解
jvm·面试·职场和发展
CoderCodingNo8 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人8 小时前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋9 小时前
443. 压缩字符串-python-双指针
算法
Charlie_lll9 小时前
力扣解题-移动零
后端·算法·leetcode
chaser&upper9 小时前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_499771559 小时前
C++中的组合模式
开发语言·c++·算法
iAkuya9 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼9 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先