TensorFlow在Microsoft Windows 11下编程

运行平台:Microsoft Windows 11

IDE:VScode

FrameWork:TensorFlow

programming language:python

一:TensorFlow在Microsoft Windows 11下的安装

Tensor Flow是Google的一个开源深度学习框架。

TensorFlow的安装:

python版本要求:TensorFlow支持Python3.7-3.11。(具体可能因TensorFlow版本而异)。

虚拟环境:建议先创建并激活虚拟环境

复制代码
python -m venv tf_env
.\tf_env\Scripts\activate #windows

安装CPU版本:

二:TensorFlow在Microsoft Windows 11下用VScode编程

可以用AI编程工具自动生成一段应用TensorFlow的代码,或者ChatGPT也行。将代码放入VScode进行调试

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist

# 超参数
batch_size = 64
num_classes = 10
epochs = 5

# 下载和准备 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255
x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 将标签转换为分类格式
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))

# 编译模型
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'\nTest accuracy: {test_acc:.4f}')

以上内容仅供参考,如有不对,欢迎指正。

说明:包含AI辅助生成内容

相关推荐
Junlan277 小时前
Cursor使用入门及连接服务器方法(更新中)
服务器·人工智能·笔记
robot_learner7 小时前
OpenClaw, 突然走红的智能体
人工智能
belldeep7 小时前
python:用 Flask 3 , mistune 2 和 mermaid.min.js 10.9 来实现 Markdown 中 mermaid 图表的渲染
javascript·python·flask
ujainu小7 小时前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
喵手7 小时前
Python爬虫实战:电商价格监控系统 - 从定时任务到历史趋势分析的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·电商价格监控系统·从定时任务到历史趋势分析·采集结果sqlite存储
rcc86287 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
PHP小志7 小时前
Windows 服务器怎么修改密码和用户名?账户被系统锁定如何解锁
windows
霖大侠8 小时前
【无标题】
人工智能·深度学习·机器学习
喵手8 小时前
Python爬虫实战:京东/淘宝搜索多页爬虫实战 - 从反爬对抗到数据入库的完整工程化方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·京东淘宝页面数据采集·反爬对抗到数据入库·采集结果csv导出
callJJ8 小时前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型