简明 | Yolo-v3结构理解摘要

目录

整体结构

DBL

Res-n

Res-unit

concat

上采样


整体结构

网络主要包括两部分,一个部分是主干网络Darknet-53,一个部分使用特征金字塔(FPN)融合、加强特征提取并利用卷积进行预测。

DBL

DBL,即Darknetconv2d_BN_Leaky,就是conv+BN(Batch Normalization)+Leaky relu,三者共同构成组件。除最后一层卷积层外,BN和leaky relu与卷积层完整绑定。

Res-n

Res-n,即残差模块,n表示这个Res-block里含有多少个Res-unit。yolo-v3首次借鉴ResNet的残差结构,让网络更深,例如从v2的darknet-19到v3的darknet-53。http://t.csdnimg.cn/swIL4

Res-unit

Res-u,即残差单元,含有多个DBL,残差模块中含有一个或多个残差单元。

concat

concat,即拼接层,PyTorch中就是张量拼接,将Darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。

上采样

上采样层,放大图片和增加图片的分辨率,将提取到的Feature Map进行放大, 从而以更高的分辨率进行显示图像。这里的图像放大,不是下采样的逆操作,通常通过双线性插值或转置卷积实现。

相关推荐
AI视觉网奇3 小时前
图像分层 Layer Diffusion 笔记
计算机视觉
java1234_小锋3 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 自注意力机制(Self-Attention)原理介绍
深度学习·语言模型·transformer
ney187819024743 小时前
分类网络LeNet + FashionMNIST 准确率92.9%
python·深度学习·分类
Coding茶水间3 小时前
基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
田里的水稻4 小时前
DT_digital_twin_ROS+Grazebo仿真
深度学习·数据挖掘·数据分析
飞Link4 小时前
GDN:深度学习时代的图偏差网络异常检测全解析
网络·人工智能·深度学习
陈天伟教授4 小时前
人工智能应用-机器视觉:人脸识别(6)深度神经网络方法
人工智能·神经网络·dnn
JERRY. LIU5 小时前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉