ID3,C4.5,CART对比

ID3、C4.5、CART算法对比

基础概念

ID3、C4.5和CART是三种经典的决策树算法,均用于分类或回归任务,但在核心思想、分裂标准、处理能力等方面存在差异。

分裂标准

ID3使用信息增益(Information Gain)作为分裂标准,倾向于选择取值较多的特征,可能导致过拟合。

C4.5改进为信息增益比(Gain Ratio),通过引入分裂信息(Split Information)惩罚多值特征,缓解了ID3的偏差。

CART采用基尼指数(Gini Index)或均方误差(MSE),前者用于分类,后者用于回归,计算效率更高且支持连续特征。

树结构

ID3和C4.5生成多叉树,每个节点的分支数等于特征取值个数。

CART生成二叉树,通过二元分裂(如"是/否"或阈值划分)简化模型结构,更适合处理连续特征。

缺失值与连续值

ID3不支持缺失值和连续特征,需预处理。

C4.5可处理缺失值并通过阈值离散化连续特征。

CART直接支持连续特征,通过寻找最优分割点处理。

剪枝策略

ID3无剪枝机制,依赖提前停止条件(如最大深度)。

C4.5采用悲观剪枝(Pessimistic Pruning),基于统计显著性检验。

CART使用代价复杂度剪枝(Cost-Complexity Pruning),通过交叉验证选择最优子树。

应用场景

ID3适用于小型离散数据集,简单但易过拟合。

C4.5适合需要处理缺失值或多值特征的场景,泛化能力更强。

CART广泛应用于分类和回归任务,尤其是集成学习(如随机森林、GBDT)。

输出类型

ID3和C4.5仅支持分类任务。

CART支持分类和回归,通过基尼指数或MSE切换任务类型。

示例公式
  • 信息增益(ID3) :

    ( \text{InfoGain}(D, A) = H(D) - \sum_{v \in \text{Values}(A)} \frac{|D_v|}{|D|} H(D_v) )

    其中 ( H(D) ) 为数据集 ( D ) 的熵。

  • 信息增益比(C4.5) :

    ( \text{GainRatio}(D, A) = \frac{\text{InfoGain}(D, A)}{\text{SplitInfo}(D, A)} )

    ( \text{SplitInfo}(D, A) = -\sum_{v \in \text{Values}(A)} \frac{|D_v|}{|D|} \log_2 \frac{|D_v|}{|D|} )

  • 基尼指数(CART分类) :

    ( \text{Gini}(D) = 1 - \sum_{i=1}^k p_i^2 )

    其中 ( p_i ) 为类别 ( i ) 的比例。

  • 均方误差(CART回归) :

    ( \text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 )

相关推荐
小鸡吃米…1 小时前
机器学习的商业化变现
人工智能·机器学习
木非哲4 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃5 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd9 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机10 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Σίσυφος190010 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
CHHYQMGDCDZu10 小时前
工业互联网WMS系统源码。 前端基于Vue2.6,后端基于.NetCore3.1,前后端分离
决策树
rcc862810 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠11 小时前
【无标题】
人工智能·深度学习·机器学习
B站_计算机毕业设计之家11 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法