spark的血脉机制

第一个问题:软件在设计时是怎么保证数据的安全性?

方案一:副本机制:将数据存储多份,每一份存在不同的节点上【内存一般不建议使用副本,内存小,而且易丢失】 hdfs

方案二:操作日志:记录内存的所有变化追加到一个日志文件中,可以通过日志文件进行恢复【日志数据量太大,恢复部分数据性能特别差】 namenode、redis

方案三:依赖关系:记录所有数据的来源,当数据丢失的时候,基于数据来源重新构建一份 spark

Spark的血缘机制(Lineage)是其容错设计的核心,通过记录数据转换的依赖关系而非存储中间数据实现高效容错。其运作机制如下:

一、血缘机制原理

  1. 依赖关系记录

    每个RDD(弹性分布式数据集)存储其生成逻辑: $$ \text{RDD}\text{new} = f(\text{RDD} \text{parent}) $$ 例如:textRDD = fileRDD.flatMap(lambda line: line.split(" "))

  2. 有向无环图(DAG)

    所有转换操作构成依赖关系图:

    复制代码
    graph LR
    A[原始RDD] --> B[Map操作]
    B --> C[Filter操作]
    C --> D[最终RDD]

二、容错实现流程

当节点故障导致分区丢失时:

  1. 回溯依赖链
    根据血缘记录定位数据源头
  2. 重新计算
    仅重算丢失分区的转换路径

    \\text{恢复时间} \\propto \\text{依赖链长度}

三、技术优势

  1. 空间高效
    避免数据复制,节省存储成本
  2. 计算优化
    支持检查点(Checkpoint)缩短依赖链

    T_\\text{recovery} = \\min(T_\\text{full_compute}, T_\\text{checkpoint})

案例 :过滤大文件时仅需记录filter(func)的转换逻辑,故障后直接从源文件重新执行过滤,无需备份中间数据。

相关推荐
程序员泠零澪回家种桔子36 分钟前
分布式事务核心解析与实战方案
分布式
Dxy123931021644 分钟前
Elasticsearch 索引与映射:为你的数据打造一个“智能仓库”
大数据·elasticsearch·搜索引擎
凯子坚持 c1 小时前
CANN 生态中的分布式训练利器:深入 `collective-ops` 项目实现高效多卡协同
分布式
岁岁种桃花儿1 小时前
Kafka从入门到上天系列第一篇:kafka的安装和启动
大数据·中间件·kafka
Apache Flink2 小时前
Apache Flink Agents 0.2.0 发布公告
大数据·flink·apache
永霖光电_UVLED2 小时前
打造更优异的 UVB 激光器
大数据·制造·量子计算
m0_466525292 小时前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
晟诺数字人2 小时前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
惊讶的猫2 小时前
rabbitmq实践小案例
分布式·rabbitmq
vx_biyesheji00012 小时前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts