VLDB 2025 | 时间序列(Time Series)论文总结(预测,异常检测,压缩,自动化等)

VLDB 2025于2025年9月1号-5号在英国伦敦(London, United Kingdom)举行。

本文总结了VLDB 2025 有关时间序列(Time Series)的相关论文,主要包含如有疏漏,欢迎大家补充。

时间序列Topic:预测,异常检测,聚类,压缩,自动化,大模型,时序数据库等。

1. Less is More: Efficient Time Series Dataset Condensation via Two-fold Modal Matching 2. A Memory Guided Transformer for Time Series Forecasting 3. Goku: A Schemaless Time Series Database for Large Scale Monitoring at Pinterest 4. Fully Automated Correlated Time Series Forecasting in Minutes 5. Discovering Leitmotifs in Multidimensional Time Series 6. MLP-Mixer based Masked Autoencoders Are Effective, Explainable and Robust for Time Series Anomaly Detection 7. Representative Time Series Discovery for Data Exploration 8. Migration-Free Elastic Storage of Time Series in Apache IoTDB 9. Streaming Time Series Subsequence Anomaly Detection: A Glance and Focus Approach 10. Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains 11. Time Series Motif Discovery: A Comprehensive Evaluation 12. ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning 13. STsCache: An Efficient Semantic Caching Scheme for Time-series Data Workloads Based on Hybrid Storage 14. TAB: Unified Benchmarking of Time Series Anomaly Detection Methods 15. UFGTime: Mining Intertwined Dependencies in Multivariate Time Series via an Efficient Pure Graph Approach (Flavor: Foundations and Algorithms Papers) 16. MOMENTI: Scalable Motif Mining in Multidimensional Time Series 17. Improving Time Series Data Compression in Apache IoTDB 18. TSB-AutoAD: Towards Automated Solutions for Time-Series Anomaly Detection [E, A & B] 19. Time-Series Clustering: A Comprehensive Study of Data Mining, Machine Learning, and Deep Learning Methods 20. Demonstration of ModelarDB: Model-Based Management of High-Frequency Time Series Across Edge, Cloud, and Client 21. EasyAD: A Demonstration of Automated Solutions for Time-Series Anomaly Detection 22. SAIL: A Voyage to Symbolic Approximation Solutions for Time-Series Analysis

🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀

欢迎大家关注时空探索之旅时空探索之旅

链接 :++https://www.vldb.org/pvldb/vol18/p226-miao.pdf++

代码 :++https://github.com/uestc-liuzq/STdistillation++

作者:Hao Miao, Ziqiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Christian S. Jensen

关键词:时序数据压缩,模态匹配

2 A Memory Guided Transformer for Time Series Forecasting

链接 :++https://www.vldb.org/pvldb/vol18/p239-cheng.pdf++

代码 :++https://github.com/YunyaoCheng/Memformer++

作者:Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, Christian S. Jensen

关键词:预测,Transformer,记忆

3 Goku: A Schemaless Time Series Database for Large Scale Monitoring at Pinterest

链接 :++https://www.vldb.org/pvldb/vol18/p503-sanghavi.pdf++

作者:Monil Mukesh Sanghavi, Ming-May Hu, Zhenxiao Luo, Xiao Li, Kapil Bajaj

关键词:无模式时序数据库

4 Fully Automated Correlated Time Series Forecasting in Minutes

链接 :++https://www.vldb.org/pvldb/vol18/p144-wu.pdf++

代码 :++https://github.com/ccloud0525/FACTS++

作者:Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen

关键词:全自动化预测,效率

5 Discovering Leitmotifs in Multidimensional Time Series

链接 :++https://www.vldb.org/pvldb/vol18/p377-schafer.pdf++

代码 :++https://github.com/patrickzib/leitmotifs++

作者:Patrick Schäfer, Ulf Leser

关键词:主导动机发现,多维时间序列

6 MLP-Mixer based Masked Autoencoders Are Effective, Explainable and Robust for Time Series Anomaly Detection

链接 :++https://www.vldb.org/pvldb/vol18/p798-qideng.pdf++

代码 :++https://github.com/richard-tang199/MMA++

作者:Tang Qideng, Dai Chaofan, Wu Yahui, Zhou Haohao

关键词:异常检测,MAE,MLP-Mixer

7 Representative Time Series Discovery for Data Exploration

链接 :++https://www.vldb.org/pvldb/vol18/p915-bao.pdf++

代码 :++https://github.com/rmitbggroup/RTSD++

作者:Ge Lee, Shixun Huang, Zhifeng Bao, Yanchang Zhao

关键词:时序相似度度量

8 Migration-Free Elastic Storage of Time Series in Apache IoTDB

链接 :++https://www.vldb.org/pvldb/vol18/p1784-song.pdf++

作者:Rongzhao Chen, Xiangpeng Hu, Xiangdong Huang, Chen Wang, Shaoxu Song, Jianmin Wang

关键词:弹性时序存储,IoTDB

9 Streaming Time Series Subsequence Anomaly Detection: A Glance and Focus Approach

链接 :++https://www.vldb.org/pvldb/vol18/p1892-zheng.pdf++

代码 :++https://github.com/Wangwenjing1996/Sirloin++

作者:Wenjing Wang, Ziyang Yue, Bolong Zheng

关键词:异常检测,流式时序

10 Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains

链接 :++https://www.vldb.org/pvldb/vol18/p1691-jacob.pdf++

代码 :++https://github.com/exathlonbenchmark/divad++

作者:Vincent Jacob, Yanlei Diao

关键词:异常检测,无监督,异构域

11 Time Series Motif Discovery: A Comprehensive Evaluation

链接 :++https://www.vldb.org/pvldb/vol18/p2226-boniol.pdf++

代码 :++https://github.com/grrvlr/TSMD++

作者:Valerio Guerrini, Thibaut Germain, Charles Truong, Laurent Oudre, Paul Boniol

关键词:模式(基序)发现

12 ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning

链接 :++https://www.vldb.org/pvldb/vol18/p2385-xie.pdf++

代码 :++https://github.com/NetManAIOps/ChatTS++

作者:Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, Dan Pei

关键词:LLM,时序推理,对齐,智能运维

13 STsCache: An Efficient Semantic Caching Scheme for Time-series Data Workloads Based on Hybrid Storage

链接 :++https://www.vldb.org/pvldb/vol18/p2964-li.pdf++

代码 :++https://github.com/ts-lab1024/ts-semantic-caching++

作者:Tao Kong, Hui Li, Yuxuan Zhao, Liping Li, Xiyue Gao, Qilong Wu, Jiangtao Cui

关键词:时间序列数据工作负载,查询模式

14 TAB: Unified Benchmarking of Time Series Anomaly Detection Methods

链接 :++https://www.vldb.org/pvldb/vol18/p2775-hu.pdf++

代码 :++https://github.com/decisionintelligence/TAB++

作者:Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, Bin Yang

关键词:异常检测,benchmark

15 UFGTime: Mining Intertwined Dependencies in Multivariate Time Series via an Efficient Pure Graph Approach (Flavor: Foundations and Algorithms Papers)

链接 :++https://www.vldb.org/pvldb/vol18/p3175-gao.pdf++

代码 :++https://github.com/WonderHeiYi/UFGTIME++

作者:Ruikun Li, Dai Shi, Ye Xiao, Junbin Gao

关键词:多元时序预测,GNN

16 MOMENTI: Scalable Motif Mining in Multidimensional Time Series

链接 :++https://www.vldb.org/pvldb/vol18/p3463-ceccarello.pdf++

代码 :++https://github.com/aidaLabDEI/MOMENTI-motifs++

作者:Matteo Ceccarello, Francesco Pio Monaco, Francesco Silvestri

关键词:基序挖掘,多维时序

17 Improving Time Series Data Compression in Apache IoTDB

链接 :++https://www.vldb.org/pvldb/vol18/p3406-tang.pdf++

代码 :++https://github.com/yuxin370/CompressIoTDB++

作者:Yuxin Tang, Feng Zhang, Jiawei Guan, Yuan Tian, Xiangdong Huang, Chen Wang, Jianmin Wang, Xiaoyong Du

关键词:时序数据压缩,模态匹配

18 TSB-AutoAD: Towards Automated Solutions for Time-Series Anomaly Detection [E, A & B]

链接 :++https://www.vldb.org/pvldb/vol18/p4364-liu.pdf++

代码 :++https://github.com/TheDatumOrg/TSB-AutoAD++

作者:Qinghua Liu, Seunghak Lee, Paparrizos John

关键词:异常检测,自动化

19 Time-Series Clustering: A Comprehensive Study of Data Mining, Machine Learning, and Deep Learning Methods

链接 :++https://www.vldb.org/pvldb/vol18/p4380-paparrizos.pdf++

代码 :++http://www.timeseries.org/tsclusteringeval++

作者:John Paparrizos, Sai Prasanna Teja Reddy Bogireddy

关键词:时序聚类

20 Demonstration of ModelarDB: Model-Based Management of High-Frequency Time Series Across Edge, Cloud, and Client

链接 :++https://www.vldb.org/pvldb/vol18/p5247-jensen.pdf++

作者:Søren Kejser Jensen, Christian Schmidt Godiksen, Christian Thomsen, Torben Bach Pedersen

关键词:边缘部署,ModelarDB

21 EasyAD: A Demonstration of Automated Solutions for Time-Series Anomaly Detection

链接 :++https://www.vldb.org/pvldb/vol18/p5431-liu.pdf++

作者:Qinghua Liu, Seunghak Lee, John Paparrizos

关键词:异常检测,自动化解决方案

22 SAIL: A Voyage to Symbolic Approximation Solutions for Time-Series Analysis

链接 :++https://www.vldb.org/pvldb/vol18/p5419-yang.pdf++

代码 :++https://github.com/TheDatumOrg/SAIL++

作者:Fan Yang, John Paparrizos

关键词:时序分析,符号分解

🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀

欢迎大家关注时空探索之旅时空探索之旅

相关推荐
GEO-optimize2 小时前
2025年末GEO服务商推荐甄选:综合实力测评及优选指南
人工智能·搜索引擎·geo
2 小时前
TIDB——TIKV——raft
数据库·分布式·tidb
Ven%2 小时前
【AI大模型算法工程师面试题解析与技术思考】
人工智能·python·算法
天勤量化大唯粉2 小时前
枢轴点反转策略在铜期货中的量化应用指南(附天勤量化代码)
ide·python·算法·机器学习·github·开源软件·程序员创富
我很哇塞耶2 小时前
BOSS直聘3B超越Qwen3-32B,更多训练数据刷新小模型极限
人工智能·ai·大模型
趁你还年轻_2 小时前
超越对话:AI 智能体如何自主完成复杂任务?
人工智能
不会c嘎嘎2 小时前
MySQL 指南:全面掌握用户管理与权限控制
数据库·mysql
ShadowSmartMicros2 小时前
java调用milvus数据库
java·数据库·milvus
禾高网络2 小时前
互联网医院系统,互联网医院系统核心功能及技术
java·大数据·人工智能·小程序