VLDB 2025于2025年9月1号-5号在英国伦敦(London, United Kingdom)举行。
本文总结了VLDB 2025 有关时间序列(Time Series)的相关论文,主要包含如有疏漏,欢迎大家补充。
时间序列Topic:预测,异常检测,聚类,压缩,自动化,大模型,时序数据库等。
| 1. Less is More: Efficient Time Series Dataset Condensation via Two-fold Modal Matching 2. A Memory Guided Transformer for Time Series Forecasting 3. Goku: A Schemaless Time Series Database for Large Scale Monitoring at Pinterest 4. Fully Automated Correlated Time Series Forecasting in Minutes 5. Discovering Leitmotifs in Multidimensional Time Series 6. MLP-Mixer based Masked Autoencoders Are Effective, Explainable and Robust for Time Series Anomaly Detection 7. Representative Time Series Discovery for Data Exploration 8. Migration-Free Elastic Storage of Time Series in Apache IoTDB 9. Streaming Time Series Subsequence Anomaly Detection: A Glance and Focus Approach 10. Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains 11. Time Series Motif Discovery: A Comprehensive Evaluation 12. ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning 13. STsCache: An Efficient Semantic Caching Scheme for Time-series Data Workloads Based on Hybrid Storage 14. TAB: Unified Benchmarking of Time Series Anomaly Detection Methods 15. UFGTime: Mining Intertwined Dependencies in Multivariate Time Series via an Efficient Pure Graph Approach (Flavor: Foundations and Algorithms Papers) 16. MOMENTI: Scalable Motif Mining in Multidimensional Time Series 17. Improving Time Series Data Compression in Apache IoTDB 18. TSB-AutoAD: Towards Automated Solutions for Time-Series Anomaly Detection [E, A & B] 19. Time-Series Clustering: A Comprehensive Study of Data Mining, Machine Learning, and Deep Learning Methods 20. Demonstration of ModelarDB: Model-Based Management of High-Frequency Time Series Across Edge, Cloud, and Client 21. EasyAD: A Demonstration of Automated Solutions for Time-Series Anomaly Detection 22. SAIL: A Voyage to Symbolic Approximation Solutions for Time-Series Analysis |
|---|
🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅

1 Less is More: Efficient Time Series Dataset Condensation via Two-fold Modal Matching
链接 :++https://www.vldb.org/pvldb/vol18/p226-miao.pdf++
代码 :++https://github.com/uestc-liuzq/STdistillation++
作者:Hao Miao, Ziqiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Christian S. Jensen
关键词:时序数据压缩,模态匹配

2 A Memory Guided Transformer for Time Series Forecasting
链接 :++https://www.vldb.org/pvldb/vol18/p239-cheng.pdf++
代码 :++https://github.com/YunyaoCheng/Memformer++
作者:Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, Christian S. Jensen
关键词:预测,Transformer,记忆

3 Goku: A Schemaless Time Series Database for Large Scale Monitoring at Pinterest
链接 :++https://www.vldb.org/pvldb/vol18/p503-sanghavi.pdf++
作者:Monil Mukesh Sanghavi, Ming-May Hu, Zhenxiao Luo, Xiao Li, Kapil Bajaj
关键词:无模式时序数据库

4 Fully Automated Correlated Time Series Forecasting in Minutes
链接 :++https://www.vldb.org/pvldb/vol18/p144-wu.pdf++
代码 :++https://github.com/ccloud0525/FACTS++
作者:Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen
关键词:全自动化预测,效率

5 Discovering Leitmotifs in Multidimensional Time Series
链接 :++https://www.vldb.org/pvldb/vol18/p377-schafer.pdf++
代码 :++https://github.com/patrickzib/leitmotifs++
作者:Patrick Schäfer, Ulf Leser
关键词:主导动机发现,多维时间序列

6 MLP-Mixer based Masked Autoencoders Are Effective, Explainable and Robust for Time Series Anomaly Detection
链接 :++https://www.vldb.org/pvldb/vol18/p798-qideng.pdf++
代码 :++https://github.com/richard-tang199/MMA++
作者:Tang Qideng, Dai Chaofan, Wu Yahui, Zhou Haohao
关键词:异常检测,MAE,MLP-Mixer

7 Representative Time Series Discovery for Data Exploration
链接 :++https://www.vldb.org/pvldb/vol18/p915-bao.pdf++
代码 :++https://github.com/rmitbggroup/RTSD++
作者:Ge Lee, Shixun Huang, Zhifeng Bao, Yanchang Zhao
关键词:时序相似度度量

8 Migration-Free Elastic Storage of Time Series in Apache IoTDB
链接 :++https://www.vldb.org/pvldb/vol18/p1784-song.pdf++
作者:Rongzhao Chen, Xiangpeng Hu, Xiangdong Huang, Chen Wang, Shaoxu Song, Jianmin Wang
关键词:弹性时序存储,IoTDB

9 Streaming Time Series Subsequence Anomaly Detection: A Glance and Focus Approach
链接 :++https://www.vldb.org/pvldb/vol18/p1892-zheng.pdf++
代码 :++https://github.com/Wangwenjing1996/Sirloin++
作者:Wenjing Wang, Ziyang Yue, Bolong Zheng
关键词:异常检测,流式时序

10 Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
链接 :++https://www.vldb.org/pvldb/vol18/p1691-jacob.pdf++
代码 :++https://github.com/exathlonbenchmark/divad++
作者:Vincent Jacob, Yanlei Diao
关键词:异常检测,无监督,异构域

11 Time Series Motif Discovery: A Comprehensive Evaluation
链接 :++https://www.vldb.org/pvldb/vol18/p2226-boniol.pdf++
代码 :++https://github.com/grrvlr/TSMD++
作者:Valerio Guerrini, Thibaut Germain, Charles Truong, Laurent Oudre, Paul Boniol
关键词:模式(基序)发现

12 ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning
链接 :++https://www.vldb.org/pvldb/vol18/p2385-xie.pdf++
代码 :++https://github.com/NetManAIOps/ChatTS++
作者:Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, Dan Pei
关键词:LLM,时序推理,对齐,智能运维

13 STsCache: An Efficient Semantic Caching Scheme for Time-series Data Workloads Based on Hybrid Storage
链接 :++https://www.vldb.org/pvldb/vol18/p2964-li.pdf++
代码 :++https://github.com/ts-lab1024/ts-semantic-caching++
作者:Tao Kong, Hui Li, Yuxuan Zhao, Liping Li, Xiyue Gao, Qilong Wu, Jiangtao Cui
关键词:时间序列数据工作负载,查询模式

14 TAB: Unified Benchmarking of Time Series Anomaly Detection Methods
链接 :++https://www.vldb.org/pvldb/vol18/p2775-hu.pdf++
代码 :++https://github.com/decisionintelligence/TAB++
作者:Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, Bin Yang
关键词:异常检测,benchmark

15 UFGTime: Mining Intertwined Dependencies in Multivariate Time Series via an Efficient Pure Graph Approach (Flavor: Foundations and Algorithms Papers)
链接 :++https://www.vldb.org/pvldb/vol18/p3175-gao.pdf++
代码 :++https://github.com/WonderHeiYi/UFGTIME++
作者:Ruikun Li, Dai Shi, Ye Xiao, Junbin Gao
关键词:多元时序预测,GNN

16 MOMENTI: Scalable Motif Mining in Multidimensional Time Series
链接 :++https://www.vldb.org/pvldb/vol18/p3463-ceccarello.pdf++
代码 :++https://github.com/aidaLabDEI/MOMENTI-motifs++
作者:Matteo Ceccarello, Francesco Pio Monaco, Francesco Silvestri
关键词:基序挖掘,多维时序

17 Improving Time Series Data Compression in Apache IoTDB
链接 :++https://www.vldb.org/pvldb/vol18/p3406-tang.pdf++
代码 :++https://github.com/yuxin370/CompressIoTDB++
作者:Yuxin Tang, Feng Zhang, Jiawei Guan, Yuan Tian, Xiangdong Huang, Chen Wang, Jianmin Wang, Xiaoyong Du
关键词:时序数据压缩,模态匹配

18 TSB-AutoAD: Towards Automated Solutions for Time-Series Anomaly Detection [E, A & B]
链接 :++https://www.vldb.org/pvldb/vol18/p4364-liu.pdf++
代码 :++https://github.com/TheDatumOrg/TSB-AutoAD++
作者:Qinghua Liu, Seunghak Lee, Paparrizos John
关键词:异常检测,自动化

19 Time-Series Clustering: A Comprehensive Study of Data Mining, Machine Learning, and Deep Learning Methods
链接 :++https://www.vldb.org/pvldb/vol18/p4380-paparrizos.pdf++
代码 :++http://www.timeseries.org/tsclusteringeval++
作者:John Paparrizos, Sai Prasanna Teja Reddy Bogireddy
关键词:时序聚类

20 Demonstration of ModelarDB: Model-Based Management of High-Frequency Time Series Across Edge, Cloud, and Client
链接 :++https://www.vldb.org/pvldb/vol18/p5247-jensen.pdf++
作者:Søren Kejser Jensen, Christian Schmidt Godiksen, Christian Thomsen, Torben Bach Pedersen
关键词:边缘部署,ModelarDB

21 EasyAD: A Demonstration of Automated Solutions for Time-Series Anomaly Detection
链接 :++https://www.vldb.org/pvldb/vol18/p5431-liu.pdf++
作者:Qinghua Liu, Seunghak Lee, John Paparrizos
关键词:异常检测,自动化解决方案

22 SAIL: A Voyage to Symbolic Approximation Solutions for Time-Series Analysis
链接 :++https://www.vldb.org/pvldb/vol18/p5419-yang.pdf++
代码 :++https://github.com/TheDatumOrg/SAIL++
作者:Fan Yang, John Paparrizos
关键词:时序分析,符号分解

🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅