基于PyTorch的深度学习——迁移学习2

现在将迁移学习的特征提取应用于CIFAR-10

python 复制代码
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torchvision.datasets import ImageFolder
from datetime import datetime

加载数据

python 复制代码
import torch
import torchvision
from torchvision import transforms

# =============== 1. 定义数据变换 ===============
# 训练集:增强 + 归一化(适配 ImageNet 预训练模型)
train_transform = transforms.Compose([
    transforms.Resize(256),               # 将 32x32 放大到 256x256
    transforms.RandomCrop(224),           # 随机裁剪出 224x224 区域
    transforms.RandomHorizontalFlip(),    # 随机水平翻转(数据增强)
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],       # ImageNet 的均值
        std=[0.229, 0.224, 0.225]         # ImageNet 的标准差
    )
])

# 测试集:不增强,只做确定性变换
test_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),           # 中心裁剪(非随机)
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

# =============== 2. 加载数据集 ===============
trainset = torchvision.datasets.CIFAR10(
    root="/data",
    train=True,
    download=False,      # 若未下载过,可设为 True(首次运行)
    transform=train_transform
)

testset = torchvision.datasets.CIFAR10(
    root="/data",
    train=False,
    download=False,
    transform=test_transform
)

# =============== 3. 创建 DataLoader ===============
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=64,
    shuffle=True,
    num_workers=2
)

testloader = torch.utils.data.DataLoader(
    testset,
    batch_size=64,
    shuffle=False,       # 测试时通常不打乱
    num_workers=2
)

# =============== 4. 类别标签(可选)==============
classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

接下来,下载预训练模型,冻结模型参数使得反向传播时不更新,修改最后一层输出类别(512x1000改成512x10)

python 复制代码
import torch
import torch.nn as nn
import torchvision.models as models

# =============== 1. 加载预训练的 ResNet18 模型 ===============
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)

# =============== 2. 冻结所有参数 ===============
for param in model.parameters():
    param.requires_grad = False

# =============== 3. 替换最后一层 ===============
# 原始的最后一层是 nn.Linear(512, 1000),现在我们将其改为 nn.Linear(512, 10)
num_ftrs = model.fc.in_features  # 获取原始最后一层输入特征的数量
model.fc = nn.Linear(num_ftrs, 10)  # 替换成新的全连接层,输出为 10 类别

# =============== 4. 确认只有新添加的层可训练 ===============
# 可选:打印模型中需要梯度计算的参数
for name, param in model.named_parameters():
    print(name, param.requires_grad)

# =============== 5. 创建损失函数和优化器 ===============
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)

# 只优化 model.fc 这一层的参数
# 注意:这里仅展示了如何定义损失函数和优化器,
# 实际训练过程还需要结合 DataLoader 进行迭代训练。
相关推荐
Yeats_Liao5 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
UnderTurrets6 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3646 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
高洁016 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
山土成旧客7 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习
lambo mercy7 小时前
无监督学习
人工智能·深度学习
柠柠酱7 小时前
【深度学习Day4】告别暴力拉平!MATLAB老鸟带你拆解CNN核心:卷积与池化 (附高频面试考点)
深度学习
向量引擎小橙8 小时前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
rayufo8 小时前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类
_codemonster9 小时前
计算机视觉入门到实战系列(九) SIFT算法(尺度空间、极值点判断)
深度学习·算法·计算机视觉