基于PyTorch的深度学习——迁移学习2

现在将迁移学习的特征提取应用于CIFAR-10

python 复制代码
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torchvision.datasets import ImageFolder
from datetime import datetime

加载数据

python 复制代码
import torch
import torchvision
from torchvision import transforms

# =============== 1. 定义数据变换 ===============
# 训练集:增强 + 归一化(适配 ImageNet 预训练模型)
train_transform = transforms.Compose([
    transforms.Resize(256),               # 将 32x32 放大到 256x256
    transforms.RandomCrop(224),           # 随机裁剪出 224x224 区域
    transforms.RandomHorizontalFlip(),    # 随机水平翻转(数据增强)
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],       # ImageNet 的均值
        std=[0.229, 0.224, 0.225]         # ImageNet 的标准差
    )
])

# 测试集:不增强,只做确定性变换
test_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),           # 中心裁剪(非随机)
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

# =============== 2. 加载数据集 ===============
trainset = torchvision.datasets.CIFAR10(
    root="/data",
    train=True,
    download=False,      # 若未下载过,可设为 True(首次运行)
    transform=train_transform
)

testset = torchvision.datasets.CIFAR10(
    root="/data",
    train=False,
    download=False,
    transform=test_transform
)

# =============== 3. 创建 DataLoader ===============
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=64,
    shuffle=True,
    num_workers=2
)

testloader = torch.utils.data.DataLoader(
    testset,
    batch_size=64,
    shuffle=False,       # 测试时通常不打乱
    num_workers=2
)

# =============== 4. 类别标签(可选)==============
classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

接下来,下载预训练模型,冻结模型参数使得反向传播时不更新,修改最后一层输出类别(512x1000改成512x10)

python 复制代码
import torch
import torch.nn as nn
import torchvision.models as models

# =============== 1. 加载预训练的 ResNet18 模型 ===============
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)

# =============== 2. 冻结所有参数 ===============
for param in model.parameters():
    param.requires_grad = False

# =============== 3. 替换最后一层 ===============
# 原始的最后一层是 nn.Linear(512, 1000),现在我们将其改为 nn.Linear(512, 10)
num_ftrs = model.fc.in_features  # 获取原始最后一层输入特征的数量
model.fc = nn.Linear(num_ftrs, 10)  # 替换成新的全连接层,输出为 10 类别

# =============== 4. 确认只有新添加的层可训练 ===============
# 可选:打印模型中需要梯度计算的参数
for name, param in model.named_parameters():
    print(name, param.requires_grad)

# =============== 5. 创建损失函数和优化器 ===============
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)

# 只优化 model.fc 这一层的参数
# 注意:这里仅展示了如何定义损失函数和优化器,
# 实际训练过程还需要结合 DataLoader 进行迭代训练。
相关推荐
从负无穷开始的三次元代码生活3 小时前
深度学习知识点概念速通——人工智能专业考试基础知识点
人工智能·深度学习
BB_CC_DD13 小时前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
高洁0115 小时前
DNN案例一步步构建深层神经网络(二)
人工智能·python·深度学习·算法·机器学习
Coding茶水间15 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
AI小怪兽15 小时前
RF-DETR:实时检测Transformer的神经架构搜索,首个突破 60 AP 的实时检测器 | ICLR 2026 in Submission
人工智能·深度学习·yolo·目标检测·架构·transformer
【建模先锋】15 小时前
故障诊断模型讲解:基于1D-CNN、2D-CNN分类模型的详细教程!
人工智能·深度学习·分类·cnn·卷积神经网络·故障诊断·轴承故障诊断
其美杰布-富贵-李15 小时前
tsai 中 Learner 机制深度学习笔记
人工智能·笔记·深度学习
一瞬祈望16 小时前
ImportError: cannot import name ‘OrderedDict‘ from ‘typing‘ 问题解决
pytorch·python3.7
LinkTime_Cloud17 小时前
谷歌深夜突袭:免费Flash模型发令,部分测试优于 GPT-5.2
人工智能·gpt·深度学习