NSGA-II 带精英策略的双目标遗传算法

一、算法核心原理

1. Pareto最优理论
  • 支配关系:解A支配解B,当且仅当A在所有目标上不劣于B且至少在一个目标上严格优于B
  • 非支配前沿:所有不被其他解支配的解构成的集合,构成Pareto前沿
2. 精英策略机制
  • 父代保留:将父代与子代合并后进行选择,确保优质基因不丢失
  • 环境选择:通过非支配排序和拥挤度计算筛选下一代种群
3. 双目标优化流程

初始化种群 计算目标函数 非支配排序 拥挤度计算 精英保留选择 交叉变异 生成子代 合并种群


二、改进技术

1. 快速非支配排序
  • 时间复杂度优化:从O(mN³)降至O(mN²)
  • 实现步骤: 计算每个个体的被支配数 按被支配数分层(第一层为Pareto前沿) 递归处理剩余个体
2. 拥挤度计算
  • 目的:保持种群多样性

  • 计算方法

    • d为目标维度(如f1,f2)
    • fd,max/fd,minf_{d,max}/f_{d,min}fd,max/fd,min为目标d的最大/最小值
3. 自适应遗传算子
  • 交叉概率:动态调整(初始0.8→收敛后0.6)
  • 变异算子:采用SBX(模拟二进制交叉)和多项式变异

三、MATLAB实现方案

1. 核心代码框架
matlab 复制代码
%% 参数设置
N = 100;        % 种群大小
G = 50;         % 最大迭代次数
pc = 0.8;       % 交叉概率
pm = 0.2;       % 变异概率

%% 初始化种群
pop = rand(N,2); % 二维目标空间
fitness = evaluate(pop); % 目标函数值

%% 主循环
for gen = 1:G
    % 非支配排序
    [fronts, ranks] = nonDominatedSort(fitness);
    
    % 拥挤度计算
    crowding = crowdingDistance(fitness, fronts);
    
    % 精英选择
    newPop = elitismSelection(pop, fronts, crowding);
    
    % 遗传操作
    offspring = geneticOperators(newPop, pc, pm);
    
    % 合并种群
    [pop, fitness] = mergePopulation(pop, offspring);
end

%% 结果可视化
plot(fronts(:,1),fronts(:,2),'ro');
xlabel('Objective 1'); ylabel('Objective 2');
title('Pareto Front');
2. 关键函数实现
  • 非支配排序

    matlab 复制代码
    function [fronts, ranks] = nonDominatedSort(fitness)
        N = size(fitness,1);
        dominates = zeros(N,N);
        for i = 1:N
            for j = 1:N
                if all(fitness(i,:) <= fitness(j,:)) && any(fitness(i,:) < fitness(j,:))
                    dominates(i,j) = 1;
                end
            end
        end
        % 分层处理...
    end
  • 拥挤度计算

    matlab 复制代码
    function crowding = crowdingDistance(fitness, fronts)
        [N,objs] = size(fitness);
        crowding = zeros(N,1);
        for f = 1:objs
            [~,order] = sort(fitness(:,f));
            crowding(order(1)) = Inf;
            crowding(order(end)) = Inf;
            for i = 2:N-1
                crowding(order(i)) = crowding(order(i)) + ...
                    (fitness(order(i+1),f) - fitness(order(i-1),f));
            end
        end
    end

四、性能优化

1. 并行计算加速
matlab 复制代码
% 使用parfor并行计算适应度
parfor i = 1:N
    fitness(i,:) = evaluate(pop(i,:));
end
2. 动态参数调整
  • 自适应交叉率

    matlab 复制代码
    pc = 0.8 - 0.005*(gen-1); % 随迭代次数递减
3. 内存优化
  • 稀疏矩阵存储:处理大规模种群时使用sparse矩阵

五、工程应用案例

1. 天线阵列优化
  • 目标函数

    matlab 复制代码
    {MinimizeMinimize主瓣宽度副瓣电平
  • MATLAB实现

    matlab 复制代码
    function y = antennaObjective(x)
        N = 8; % 阵元数
        d = 0.5*lambda; % 阵元间距
        theta = 30*pi/180; % 波束指向
    
        % 计算阵列方向图
        [theta_scan, P] = pattern(x, N, d, theta);
    
        y(1) = max(P);       % 主瓣宽度
        y(2) = max(P(1:10)); % 前瓣抑制
    end
2. 机器人路径规划
  • 多目标函数: 路径长度最短 避障成功率最高

  • NSGA-II参数

    matlab 复制代码
    options = optimoptions('gamultiobj',...
        'PopulationSize',50,...
        'CrossoverFcn',{@crossoverUniform,0.8},...
        'MutationFcn',{{@mutationAdaptiveFit,0.02}});

六、参考

  1. 王振杰. 改进NSGA-II算法在天线优化中的应用. 电子学报, 2021.

  2. 代码 NSGAII 带精英策略的双目标遗传算法 www.youwenfan.com/contentcso/78417.html

  3. MathWorks. NSGA-II in MATLAB. 官方文档 ww2.mathworks.cn/help/gads/examples/multiobjective-optimization-using-ga.html

相关推荐
qq_430855882 小时前
线代第二章矩阵第八节逆矩阵、解矩阵方程
线性代数·算法·矩阵
月明长歌2 小时前
【码道初阶】Leetcode136:只出现一次的数字:异或一把梭 vs HashMap 计数(两种解法完整复盘)
java·数据结构·算法·leetcode·哈希算法
Swift社区2 小时前
LeetCode 456 - 132 模式
java·算法·leetcode
LYFlied2 小时前
【每日算法】LeetCode 152. 乘积最大子数组(动态规划)
前端·算法·leetcode·动态规划
爱学大树锯2 小时前
【(格式化字符串)】
算法
wearegogog1232 小时前
压缩感知和稀疏表示恢复算法中的L1同伦算法
人工智能·算法
core5123 小时前
决策树 (Decision Tree):像“猜猜看”游戏一样的AI算法
人工智能·算法·决策树
xa138508693 小时前
ARCGIS PRO SDK 多边形四至点计算
算法·arcgis
AuroraWanderll3 小时前
类和对象(四):默认成员函数详解与运算符重载(下)
c语言·数据结构·c++·算法·stl