【Golang】LeetCode198. 打家劫舍

198. 打家劫舍

题目描述

思路

"打家劫舍"是一个经典的模板题,指的就是在动态规划问题当中,在统计答案的过程中,不能选择相邻的元素 。比如,如果我们将0位置的元素放进了背包当中,那么就不能放1位置的元素了;反之,如果我们将1位置的元素放进了背包内,就意味着0位置的元素一定没有放进背包内,同时2位置的元素不能放进背包内。题目要求我们最终统计的按照"打家劫舍"的规则,能够放进背包当中的物品的最高价值。

我们使用动态规划来解决这个问题,初始化一个长度为n的数组,名为dp,使用它来记录每一个位置按照上述规则可以获得的最高金额。我们首先来分析n == 0n == 1n == 2的特例,显然在第0个位置,金额就是0;在n == 1时,只能取nums[0]位置的元素放进背包内,此时最高价值就是nums[0];而在n == 2时,就需要判断nums[0]nums[1]哪个元素的价值更高,max(nums[0], nums[1])就是dp[2]的答案。

基于上述分析,我们可以推导出dp的状态转移方程,那就是dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])。转换成自然语言其实也很好理解,对于n == i的位置,该位置能够获得的最大价值要么就是dp[i - 1]的最大价值,此时不能够取n == i位置的元素,否则不满足"不能取相邻位置的元素"的题目约束;要么就是取nums[i]位置的元素,同时累加dp[i - 2]位置的价值。

Golang 题解

go 复制代码
func rob(nums []int) int {
    n := len(nums)
    if n == 1 {
        return nums[0]
    } else if n == 2 {
        return max(nums[0], nums[1])
    }

    dp := make([]int, n + 1)
    dp[1], dp[2] = nums[0], max(nums[0], nums[1])
    
    for i := 3; i <= n; i ++ {
        dp[i] = max(dp[i - 1], dp[i - 2] + nums[i - 1])
    }

    return dp[n]
}
相关推荐
多米Domi0111 天前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
罗湖老棍子1 天前
【例4-11】最短网络(agrinet)(信息学奥赛一本通- P1350)
算法·图论·kruskal·prim
方圆工作室1 天前
【C语言图形学】用*号绘制完美圆的三种算法详解与实现【AI】
c语言·开发语言·算法
Lips6111 天前
2026.1.16力扣刷题
数据结构·算法·leetcode
kylezhao20191 天前
C# 文件的输入与输出(I/O)详解
java·算法·c#
CodeByV1 天前
【算法题】堆
算法
kaikaile19951 天前
A星算法避开障碍物寻找最优路径(MATLAB实现)
数据结构·算法·matlab
今天_也很困1 天前
LeetCode 热题100-15.三数之和
数据结构·算法·leetcode
企业对冲系统官1 天前
基差风险管理系统日志分析功能的架构与实现
大数据·网络·数据库·算法·github·动态规划
ldccorpora1 天前
GALE Phase 1 Chinese Broadcast News Parallel Text - Part 1数据集介绍,官网编号LDC2007T23
人工智能·深度学习·算法·机器学习·自然语言处理