Windows + WSL2 + Docker + CudaToolkit:深度学习环境配置

Windows + WSL2 + Docker + CudaToolkit:深度学习环境配置

在Windows系统上解锁GPU加速的深度学习开发

在人工智能与深度学习领域,GPU加速已成为模型训练与推理的必备条件。然而,对于许多开发者而言,Windows系统下的环境配置却是一大挑战。本文将详细介绍如何通过Windows + WSL2 + Docker + CudaToolkit的组合,搭建一个高效、可移植的GPU加速开发环境。

为什么选择Windows + WSL2 + Docker + CudaToolkit?

方案优势对比

对于使用Windows系统的AI开发者,通常面临一个困境:主力显卡在Windows环境下,但深度学习框架和工具链在Linux环境中更为成熟和稳定。传统的双系统方案需要频繁重启,而虚拟机方案则无法有效调用GPU进行CUDA计算。

随着微软推出WSL2并携手NVIDIA实现GPU透传支持,现在我们可以在不离开Windows环境的情况下,获得接近原生Linux的深度学习开发体验。其核心调用链路为:

Windows NVIDIA驱动 → WSL2 GPU透传 → Docker Desktop资源分配 → 容器内CUDA/cuDNN调用GPU

GPU支持 CUDA兼容性 性能表现 易用性 是否需要重启
原生Ubuntu(双系统) ✅ 完整 ✅ 优秀 ⭐⭐⭐⭐⭐ ⭐⭐ 一般 ✅ 是
WSL2 + Docker (本方案) ✅ 完整 ✅ 优秀 ⭐⭐⭐⭐☆ (90%-95%) ⭐⭐⭐⭐⭐ 优秀 ❌ 否
传统虚拟机 ⚠️ 有限(需直通) ⚠️ 一般 ⭐⭐ 较差 ⭐⭐ 一般 ✅ 是

环境准备与前提条件

在开始配置前,请确保你的系统满足以下要求:

硬件与系统要求

  • GPU硬件:必须是NVIDIA显卡(CUDA是NVIDIA专属技术),支持CUDA Compute Capability 3.5+(主流显卡均满足)。
  • Windows系统:Windows 10 21H2及以上或Windows 11(旧版本WSL2不支持GPU透传)。
  • 内存建议:至少8GB,推荐16GB或以上,以供WSL2和Docker容器顺畅运行。

软件组件

  • WSL2:Windows Subsystem for Linux 2
  • Docker Desktop:用于管理容器化应用
  • NVIDIA驱动:支持WSL2 GPU透传的Windows版驱动
  • NVIDIA Container Toolkit:使Docker容器能够使用GPU

分步配置指南

1.WSL激活、离线升级
复制代码
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
重启设备
先下载这个,把wsl初步升级一下 https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
wsl --set-default-version 2
然后 升级wsl至最新版本 https://github.com/microsoft/WSL/releases/tag/2.6.2
2.WSL挂载Ubuntu系统
复制代码
下载这个 https://releases.ubuntu.com/noble/  然后运行安装就行
中间需要手动配置用户名和密码
复制代码
查看GPU驱动穿透是否正常
nvidia-smi
3. Docker Desktop安装
复制代码
https://www.docker.com/products/docker-desktop/
复制代码
配置一下存储
复制代码
配置WSL Ubuntu系统集成
4. Nvidia-Cuda-Toolkit 安装
复制代码
wsl
下载nvidia-container-toolkit 文件包 【https://pan.quark.cn/s/7c204585e76c】
cd ./nvidia-container-toolkit
sudo dpkg -i ./nvidia-container-toolkit/*
nvidia-docker
5. 测试案例
复制代码
docker pull nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04
docker images
复制代码
docker run --rm --gpus all nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04 nvidia-smi

这样就成功了

相关推荐
Pyeako5 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
shandianchengzi6 小时前
【记录】Tailscale|部署 Tailscale 到 linux 主机或 Docker 上
linux·运维·docker·tailscale
哥布林学者6 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
点云SLAM7 小时前
C++内存泄漏检测之Windows 专用工具(CRT Debug、Dr.Memory)和Linux 专业工具(ASan 、heaptrack)
linux·c++·windows·asan·dr.memory·c++内存泄漏检测·c++内存管理
肉肉心很软7 小时前
使用onlyoffice实现文件预览编辑 + Docker一键部署流程
运维·docker·容器
-大头.7 小时前
Docker实战:构建高性能MySQL主从复制集群(读写分离)
mysql·docker·容器
LuiChun7 小时前
Docker Compose 容器服务查询与文件查看操作指南(Windows Docker Desktop 版)【一】
linux·运维·windows·docker·容器
Yeats_Liao8 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
goodlook01239 小时前
安装最新版本docker-26.1.4
运维·docker·容器
❀͜͡傀儡师9 小时前
docker安装部署PostgreSQL带有pgvector扩展向量数据(高维数组)
docker·postgresql·容器·pgvector