大模型的运行离不开芯片和搭载在它上面的计算框架

运行一个大模型,确实就像运行一个庞大而精密的数字工厂:

芯片(硬件)是工厂的机器与动力源,而计算框架(软件)是整个工厂的流水线、控制系统和操作手册。两者深度融合,缺一不可。

我们可以将其理解为一个分层的技术栈,下图清晰地展示了从底层硬件到顶层应用的核心层次与协同关系:

上图展示了一个典型的技术栈,其中最关键的协同发生在两个"粘合层":

  1. 框架与硬件的"翻译官":驱动和编译器

    • 驱动程序:直接控制芯片,但框架不直接与它对话。

    • 系统软件 :以英伟达的 CUDA 为例,它建立了一套从PyTorch等框架到GPU硬件的完整生态。框架调用 CUDA 函数,CUDA 再驱动GPU工作。对于其他芯片(如华为昇腾NPU),其对应的 CANN 也扮演相同角色。

    • 计算图编译器 :这是性能关键 。框架将模型描述为一个计算图,编译器(如PyTorch的 TorchScript 、Google的 XLA 、英伟达的 TensorRT)会对整个图进行深度优化:包括将多个操作融合为一个更高效的内核、为特定芯片选择最佳算子实现、优化内存布局等。最终将高级模型"翻译"成在目标芯片上运行最高效的机器指令。

  2. 芯片为框架和模型提供的核心支撑

    • 算力 :GPU/NPU提供的TFLOPS/TOPS指标,直接决定了训练和推理的速度。

    • 显存容量与带宽 :大模型的参数动辄数百亿,需要被全部加载进芯片的高带宽内存 中。HBM的带宽直接决定了芯片"喂饱"自己计算核心的能力,带宽不足会成为瓶颈。

    • 高速互联 :当单个芯片无法容纳整个模型时(如万亿参数模型),必须使用多卡并行。NVLinkInfiniBand等超高速互联技术,决定了多卡之间交换数据(梯度、激活值)的效率,是实现大规模分布式训练的基础。

实际影响与选型启示

这种深度耦合带来了一个核心现实:选择芯片,往往就是选择其软件生态。

  • 英伟达(NVIDIA) :凭借 CUDA + cuDNN + TensorRT全栈封闭生态,成为了行业事实标准。PyTorch/TensorFlow对其支持最成熟,新论文的代码默认在其上运行。选择它,意味着最少的兼容性烦恼和最丰富的社区资源。

  • 其他芯片(AMD、华为、寒武纪等) :必须通过自己的软件栈去兼容主流框架(PyTorch/TensorFlow)。其成功与否,不取决于峰值算力,而取决于软件栈的兼容性、稳定性和性能表现。这需要巨大的软件投入。

未来趋势:协同设计与软硬一体

  1. 框架感知的芯片设计:芯片公司会深入研究主流框架和模型(如Transformer)的计算模式,在硬件中加入专用单元(如Transformer引擎)。

  2. 芯片感知的框架优化:框架和编译器会针对不同芯片的微架构进行深度优化,发挥其最大潜力。

  3. 统一编程接口的出现 :为了打破生态锁,OpenXLAMLIR 等开源编译器中间表示项目正在兴起,旨在让同一份模型代码能高效部署到任何硬件上,这是未来重要的演进方向。

总结来说,大模型的竞赛是"系统级"的竞赛。芯片提供"肌肉",计算框架提供"神经和骨骼"。只有两者深度协同、高效匹配,才能构建出支撑大模型智能的强健躯体。 在选择技术路线时,必须将芯片和框架作为一个整体来评估。

相关推荐
Ulyanov8 分钟前
PyVista战场可视化实战(三):雷达与目标轨迹可视化
开发语言·人工智能·python·机器学习·系统架构·tkinter·gui开发
程序员老周66632 分钟前
10.一文学会GPU与cuda原理,并从其原理来理解FlashAttention
人工智能·深度学习·语言模型·大模型·transformer·gpu算力·cuda
sunfove1 小时前
从信息熵到决策边界:决策树算法的第一性原理与深度解析
算法·决策树·机器学习
(; ̄ェ ̄)。1 小时前
机器学习入门(九)为什么sklearn正规方程法矩阵不可逆却可以计算出结果
机器学习·矩阵·sklearn
zch不会敲代码1 小时前
机器学习之线性回归简单案例(代码逐句解释)
人工智能·机器学习·线性回归
Das11 小时前
【机器学习】06_集成学习
人工智能·机器学习·集成学习
网络安全研发随想1 小时前
主流大语言模型(LLM)的后训练技术
人工智能·机器学习·语言模型
老鱼说AI1 小时前
论文精读第五期:V-STAR提高复杂推理能力
大数据·人工智能·深度学习·神经网络·机器学习·语言模型
玖日大大2 小时前
随机森林算法原理及实战代码解析
算法·随机森林·机器学习
空山新雨后、2 小时前
小数据集训练 300 epoch 夸张吗?(讲清epoch step batch )
人工智能·深度学习·机器学习·batch