雷达信号分选01

雷达辐射源信号分选是电子战与信号处理领域的核心环节,旨在从复杂电磁环境中分离出不同雷达辐射源的脉冲序列,为后续调制识别与功能分析提供基础

现有雷达信号分选通常分为预分选主分选两个阶段。

预分选主要基于射频(RF)、脉宽(PW)、到达角(DOA)等多维特征,采用聚类算法对混杂脉冲流进行初步分离,以降低主分选阶段的计算复杂度。例如,将不同频率或方向的脉冲群初步分离,避免主分选阶段因数据过载导致计算效率下降。

主分选则依托到达时间(TOA)这一一维特征,通常包括脉冲重复间隔(PRI)估计与脉冲序列搜索两个步骤,进一步实现对各雷达脉冲序列的精确分离,为后续的调制识别与功能分析提供支撑,完成脉冲的最终分选。

PRI估计:分析脉冲间的时间间隔规律,识别固定PRI、抖动PRI或参差PRI等模式。

脉冲序列搜索:根据PRI估计结果,在时间轴上匹配对应序列,完成雷达脉冲的精确归属。

预分选和主分选的创新思路如下:

当前传统雷达信号分选方法在实际应用中面临诸多挑战,如噪声干扰、脉冲丢失、杂波干扰、抗PRI抖动能力不足以及对参差信号的分选效果较差等问题。为此,可在传统方法的流程基础上进行改进,或引入新的分选策略以规避上述限制。相比之下,基于深度学习的分选方法可结合雷达信号的调制特性,灵活选取并组合不同网络模块,深入挖掘信号的周期性特征及潜在规律,从而实现更高效、鲁棒的分选效果。

相关推荐
像风一样的男人@8 小时前
python --读取psd文件
开发语言·python·深度学习
大江东去浪淘尽千古风流人物8 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam
yuanyuan2o29 小时前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
汗流浃背了吧,老弟!9 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
小瑞瑞acd10 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
芷栀夏10 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
孤狼warrior10 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
s090713610 小时前
【声呐硬件设计】LFM信号处理中前级有源滤波器设计的关键考量与原理分析
信号处理·声呐·线性相位·模拟滤波器
机器学习之心10 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
LLWZAI10 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习