雷达信号分选01

雷达辐射源信号分选是电子战与信号处理领域的核心环节,旨在从复杂电磁环境中分离出不同雷达辐射源的脉冲序列,为后续调制识别与功能分析提供基础

现有雷达信号分选通常分为预分选主分选两个阶段。

预分选主要基于射频(RF)、脉宽(PW)、到达角(DOA)等多维特征,采用聚类算法对混杂脉冲流进行初步分离,以降低主分选阶段的计算复杂度。例如,将不同频率或方向的脉冲群初步分离,避免主分选阶段因数据过载导致计算效率下降。

主分选则依托到达时间(TOA)这一一维特征,通常包括脉冲重复间隔(PRI)估计与脉冲序列搜索两个步骤,进一步实现对各雷达脉冲序列的精确分离,为后续的调制识别与功能分析提供支撑,完成脉冲的最终分选。

PRI估计:分析脉冲间的时间间隔规律,识别固定PRI、抖动PRI或参差PRI等模式。

脉冲序列搜索:根据PRI估计结果,在时间轴上匹配对应序列,完成雷达脉冲的精确归属。

预分选和主分选的创新思路如下:

当前传统雷达信号分选方法在实际应用中面临诸多挑战,如噪声干扰、脉冲丢失、杂波干扰、抗PRI抖动能力不足以及对参差信号的分选效果较差等问题。为此,可在传统方法的流程基础上进行改进,或引入新的分选策略以规避上述限制。相比之下,基于深度学习的分选方法可结合雷达信号的调制特性,灵活选取并组合不同网络模块,深入挖掘信号的周期性特征及潜在规律,从而实现更高效、鲁棒的分选效果。

相关推荐
落雨盛夏14 小时前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
就这个丶调调20 小时前
VLLM部署全部参数详解及其作用说明
深度学习·模型部署·vllm·参数配置
轴测君21 小时前
SE Block(Squeeze and Excitation Block)
深度学习·机器学习·计算机视觉
飞Link1 天前
深度学习里程碑:ResNet(残差网络)从理论到实战全解析
人工智能·python·深度学习
翱翔的苍鹰1 天前
完整的“RNN + jieba 中文情感分析”项目之一:终极版
人工智能·rnn·深度学习
茶栀(*´I`*)1 天前
PyTorch实战:CNN实现CIFAR-10图像分类的思路与优化
pytorch·深度学习·cnn
爱喝可乐的老王1 天前
深度学习初认识
人工智能·深度学习
孤狼warrior1 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
努力毕业的小土博^_^1 天前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
花月mmc1 天前
CanMV K230 波形识别——数据分析(2)
python·数据挖掘·数据分析·信号处理