基于keras框架的MobileNet深度学习神经网络垃圾识别分类系统源码

第一步:准备数据

三种垃圾数据:厨房垃圾,危害性垃圾,可回收垃圾,总共10162张图片

第二步:搭建模型

本文选择MobileNe,其网络结构如下:

由于是三分类问题,直接套用网络肯定是不行,因此会在全连接部分做手脚,参考代码如下:

python 复制代码
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dense(256)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dense(64)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dense(class_num)(x)
    predictions = Activation('softmax')(x)

    # for layer in base_model.layers:
    #     layer.trainable = True

    model = Model(inputs=base_model.input, outputs=predictions)
    return model

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)MobileNet可以从头训练或者利用预训练模型进行训练:

python 复制代码
def MobileNet_model(width, height, class_num):
    w = 1
    if w:
        base_model = MobileNet(weights='imagenet', include_top=False, input_shape=(width, height, 3))
    else:
        base_model = MobileNet(weights=None, include_top=False, input_shape=(width, height, 3))
    for layer in base_model.layers:
        layer.trainable = True

第四步:统计正确率

|----------------------------------------------------------------------------------|
| |

正确率高达94.1%

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码,主要使用方法可以参考里面的"文档说明_必看.docx"

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

https://www.bilibili.com/video/BV1Y2UaYrEMj/

相关推荐
程序员清洒5 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island13145 小时前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
程序猿追5 小时前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子5 小时前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
HyperAI超神经5 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
空白诗5 小时前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
七月稻草人6 小时前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
User_芊芊君子6 小时前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
云边有个稻草人6 小时前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann
爱吃大芒果6 小时前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络