P4145 上帝造题的七分钟 2 / 花神游历各国[线段树 区间开方(剪枝) + 区间求和]

P4145 上帝造题的七分钟 2 / 花神游历各国

时间限制: 1.00s 内存限制: 125.00MB

复制 Markdown

中文

退出 IDE 模式

题目背景

XLk 觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。

题目描述

"第一分钟,X 说,要有数列,于是便给定了一个正整数数列。

第二分钟,L 说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作。

第三分钟,k 说,要能查询,于是便有了求一段数的和的操作。

第四分钟,彩虹喵说,要是 NOIP 难度,于是便有了数据范围。

第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。

第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过 64 位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。"

------《上帝造题的七分钟·第二部》

所以这个神圣的任务就交给你了。

输入格式

第一行一个整数 n,代表数列中数的个数。

第二行 n 个正整数,表示初始状态下数列中的数。

第三行一个整数 m,表示有 m 次操作。

接下来 m 行每行三个整数 k l r

  • k=0 表示给 [l,r] 中的每个数开平方(下取整)。

  • k=1 表示询问 [l,r] 中各个数的和。

数据中有可能 l>r,所以遇到这种情况请交换 l 和 r。

输出格式

对于询问操作,每行输出一个回答。

输入输出样例

输入 #1复制运行

复制代码
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8

输出 #1复制运行

复制代码
19
7
6

说明/提示

对于 30% 的数据,1≤n,m≤103,数列中的数不超过 32767。

对于 100% 的数据,1≤n,m≤105,1≤l,r≤n,数列中的数大于 0,且不超过 1012。

显然对于0 和1 无论怎么开方都是自己 由于数据都是整数 所以如果一段区间的最大值是0 或1 那么取反后仍为自己 换句话说就是不用管 加上这一层剪枝会使效率提高 因为开方操作不能用懒标记实现

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
#define int long long
int a[N],n,m;
struct SegmentTree{
    int l,r,sum,maxn;
    #define l(x) tree[x].l
    #define r(x) tree[x].r
    #define sum(x) tree[x].sum
    #define maxn(x) tree[x].maxn
}tree[N<<2];
void pushup(int p){
    sum(p)=sum(p<<1)+sum(p<<1|1);
    maxn(p)=max(maxn(p<<1),maxn(p<<1|1));
}
void build(int p,int l,int r){
    l(p)=l,r(p)=r;
    if(l==r){
        sum(p)=maxn(p)=a[l];return;
    }
    int mid=(l+r)>>1;
    build(p<<1,l,mid);
    build(p<<1|1,mid+1,r);
    pushup(p);
}
void change(int p,int l,int r){
    if(l(p)==r(p)){
        sum(p)=sqrt(sum(p));
        maxn(p)=sqrt(maxn(p));
        return;
    }
    int mid=(l(p)+r(p))>>1;
    if(l<=mid&&maxn(p<<1)>1)change(p<<1,l,r);
    if(r>mid&&maxn(p<<1|1)>1)change(p<<1|1,l,r);
    pushup(p);
}
int query(int p,int l,int r){
    if(l<=l(p)&&r>=r(p)){
        return sum(p);
    }
    int mid =(l(p)+r(p))>>1;
    int val=0;
    if(l<=mid)val+=query(p<<1,l,r);
    if(r>mid)val+=query(p<<1|1,l,r);
    return val;
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
    build(1,1,n);
    cin>>m;
    while(m--){
        int op,l,r;
        cin>>op>>l>>r;
        if(l>r)swap(l,r);
        if(op==0){
            change(1,l,r);
        }else cout<<query(1,l,r)<<'\n';
    }
    return 0;
}
相关推荐
微尘hjx10 小时前
【深度学习02】YOLO模型的数据集、训练、验证、预测、导出
人工智能·python·深度学习·yolo·机器学习·训练·yolo11
Zzz不能停10 小时前
堆排序算法及大小堆区别
数据结构·算法
B站计算机毕业设计之家10 小时前
机器学习:Python豆瓣图书数据分析可视化系统 Echarts图表展示 爬虫数据采集 Flask 计算机毕业设计(建议收藏)✅
python·机器学习·数据分析·毕业设计·可视化·图书·书籍
zd84510150010 小时前
stm32f407 电机多轴联动算法
stm32·单片机·算法
Blossom.11810 小时前
工业级扩散模型优化实战:从Stable Diffusion到LCM的毫秒级生成
开发语言·人工智能·python·深度学习·机器学习·stable diffusion·transformer
代码游侠10 小时前
应用——Linux FrameBuffer图形显示与多线程消息系统项目
linux·运维·服务器·开发语言·前端·算法
Eloudy10 小时前
矩阵张量积(Kronecker积)的代数性质与定理
算法·量子计算
charlie11451419110 小时前
从0开始的机器学习(笔记系列)——导数 · 多元函数导数 · 梯度
人工智能·笔记·学习·数学·机器学习·导数