锚框 与 完整YOLO示例(吴恩达深度学习笔记)

目录

[1.锚框(anchor box)](#1.锚框(anchor box))

(1)作用

(2)使用

(3)例子

[(4)anchor box形状的选择](#(4)anchor box形状的选择)

2.完整YOLO算法示例⭐

(1)训练卷积网络

(2)预测过程


1.锚框(anchor box)
(1)作用
  • anchor box用于从一个图像中检测多个对象
(2)使用
  • anchor box的思路是预先定义两个不同形状的anchor box,把预测结果和这两个anchor box关联起来。一般来说,你可能会用更多的anchor box,可能要5个甚至更多。
(3)例子
  • 可以发现图中有人和车两个对象,假设我们要检测这2个对象,就要预先定义两个不同形状的anchor box,此时y的类别标签不再是图中左下角的 y,而是重复2次,变为右边的 y
  • 前8个(上图中绿色方框标记的参数)是和anchor box 1关联的8个参数,后面的8个参数是和anchor box 2相关联。这下训练的识别卷积网络的输出就是3×3×16
(4)anchor box形状的选择
  • 人工指定形状:人工选择5到10个anchor box形状,覆盖到检测对象的多种不同形状,
  • k-平均算法(k-means)(YOLO算法中的):将几类对象形状聚类,如果我们用它来选择一组最具代表性的anchor box
2.完整YOLO算法示例⭐
  • 一个检测人,车,摩托的例子。
(1)训练卷积网络
  • 假设2个anchor box,图像分为3×3网格,所以网络输出为3×3×16。
(2)预测过程
  • 对于这个测试图像
  • 得到所有检测框:因为使用两个anchor box,那么对于9个格子中任何一个都会有两个预测框(注意有一些边界框可以超出所在格子的高度和宽度)
  • 然后抛弃概率很低的预测框:去掉这些连神经网络都说,这里很可能什么都没有,所以你需要抛弃这些。
  • 最后,非极大值抑制:有三个目标检测类别,人,汽车和摩托车,对于每个类别单独运行非极大值抑制,处理预测结果所属类别的边界框,运行三次来得到最终的预测结果。
相关推荐
沃达德软件12 小时前
人脸模糊图像清晰化技术
人工智能·深度学习·神经网络·机器学习·计算机视觉
AI视觉网奇12 小时前
blender fbx 比例不对 比例调整
笔记·学习·ue5
想你依然心痛12 小时前
Spark大数据分析与实战笔记(第六章 Kafka分布式发布订阅消息系统-03)
笔记·分布式·spark·kafka
OLOLOadsd12312 小时前
【深度学习】RetinaNet_RegNetX-800MF_FPN_1x_COCO_金属表面缺陷检测与分类模型解析
人工智能·深度学习·分类
雁于飞12 小时前
【无标题】
笔记·面试·职场和发展·跳槽·产品经理·创业创新·学习方法
Z.风止12 小时前
Go-learning(1)
开发语言·笔记·后端·golang
好好沉淀12 小时前
Elasticsearch (ES) 核心笔记
大数据·笔记·elasticsearch
宵时待雨12 小时前
STM32笔记归纳5:SPI
笔记·stm32·嵌入式硬件
LeoZY_12 小时前
CH347 USB转JTAG功能使用笔记:CH347根据SVF文件实现任意FPGA下载
笔记·stm32·嵌入式硬件·fpga开发·硬件架构·硬件工程
查无此人byebye12 小时前
阿里开源Wan2.2模型全面解析:MoE架构加持,电影级视频生成触手可及
人工智能·pytorch·python·深度学习·架构·开源·音视频