CEEMD-KPCA-PINN多变量时序光伏功率预测!互补集合经验模态分解+核主成份降维+物理信息神经网络,MATLAB代码

互补集合经验模态分解+核主成份降维+物理信息神经网络!CEEMD-KPCA-PINN多变量时序光伏功率预测,MATLAB代码

一、主要功能

该代码用于光伏功率时间序列预测,结合了信号分解、特征降维和物理约束神经网络,实现对光伏发电功率的高精度预测。

二、算法步骤

  1. 数据预处理(main1_CEEMD.m)
    读取光伏功率数据(每小时一个点,每天96个点)
    使用 CEEMD(互补集合经验模态分解) 对每个特征进行分解
    将原始信号分解为多个IMF(本征模态函数)和残差项
    可视化分解结果并保存
  2. 特征降维(main2_KPCA.m)
    加载EEMD分解后的数据
    使用 KPCA(核主成分分析) 进行特征降维
    计算累积贡献率,保留贡献率>90%的主成分
    保存降维后的数据
  3. PINN预测建模(main3_CEEMD_KPCA_PINN.m)
    重构数据集(时间序列滑窗处理)
    划分训练集(30天)和测试集(第31天)
    数据归一化
    构建物理信息神经网络(PINN) 模型
    训练模型(含物理约束损失)
    预测并评估模型性能

三、技术路线

text

原始光伏数据

CEEMD信号分解 → 多尺度特征提取

KPCA特征降维 → 保留主要信息,去除冗余

构建时序样本(滑窗法)

划分训练集/测试集

PINN建模(含物理约束)

预测与评估

四、参数设定

数据参数:

采样频率:fs = 1(每小时)

每天样本数:num = 96

训练天数:L1 = 30

预测天数:L2 = 31

延时步长:kim = 4

CEEMD参数:

噪声标准差:Nstd

集合次数:NR

提取模态上限:TNM

KPCA参数:

核函数:多项式核 'poly'

核参数:para = 10

PINN参数:

网络结构:64-64-64-1(3个隐藏层)

激活函数:tanh

训练轮数:numEpochs = 2000

学习率:learningRate = 0.001

物理损失权重:lambda_phys = 0.1

五、运行环境

平台:MATLAB R2024b+

必要工具箱:

Signal Processing Toolbox

Deep Learning Toolbox

Statistics and Machine Learning Toolbox

六、应用场景

光伏电站功率预测:用于电力系统调度

电力市场交易:提供日前功率预测报价

可再生能源研究:评估光伏发电特性

七、模型特点

✅ 多尺度分析:CEEMD提取不同频率特征

✅ 维度压缩:KPCA去除冗余信息

✅ 物理约束:PINN引入光伏功率变化规律

✅ 可视化丰富:极坐标图、误差分布、性能汇总

✅ 评估全面:RMSE、MAE、MBE、MSE、R² 多指标









完整代码私信回复CEEMD-KPCA-PINN多变量时序光伏功率预测!互补集合经验模态分解+核主成份降维+物理信息神经网络,MATLAB代码

相关推荐
木非哲16 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃17 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd1 天前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机1 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
芷栀夏1 天前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
Evand J1 天前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop
Σίσυφος19001 天前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
rcc86281 天前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠1 天前
【无标题】
人工智能·深度学习·机器学习
B站_计算机毕业设计之家1 天前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法