一、数据集说明:
Advertising 数据集: https://www.kaggle.com/datasets/tawfikelmetwally/advertising-dataset.
ID:序号
TV:电视广告投放金额,单位千元
Radio:广播广告投放金额,单位千元
Newspaper:报纸广告投放金额,单位千元
Sales:销售额,单位百万元
二、代码实现
import pandas as pd
from sklearn.preprocessing import StandardScaler # 标准化
from sklearn.model_selection import train_test_split # 划分数据集
from sklearn.linear_model import LinearRegression, SGDRegressor # 线性
回归-正规方程,线性回归-随机梯度下降
from sklearn.metrics import mean_squared_error # 均方误差
# 加载数据集
advertising = pd.read_csv("data/advertising.csv")
advertising.drop(advertising.columns[0], axis=1, inplace=True)
advertising.dropna(inplace=True)
advertising.info()
print(advertising.head())
# 划分训练集与测试集
X = advertising.drop("Sales", axis=1)
y = advertising["Sales"]
x_train, x_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=0)
# 标准化
preprocessor = StandardScaler()
x_train = preprocessor.fit_transform(x_train) # 计算训练集的均值和标准差,并标准化训练集
x_test = preprocessor.transform(x_test) # 使用训练集的均值和标准差对测试集标准化
# 使用正规方程法拟合线性回归模型
normal_equation = LinearRegression()
normal_equation.fit(x_train, y_train)
print("正规方程法解得模型系数:", normal_equation.coef_)
print("正规方程法解得模型偏置:", normal_equation.intercept_)
# 使用随机梯度下降法拟合线性回归模型
gradient_descent = SGDRegressor()
gradient_descent.fit(x_train, y_train)
print("随机梯度下降法解得模型系数:", gradient_descent.coef_)
print("随机梯度下降法解得模型偏置:", gradient_descent.intercept_)
# 使用均方误差评估模型
print("正规方程法均方误差:", mean_squared_error(y_test,
normal_equation.predict(x_test)))
print("随机梯度下降法均方误差:", mean_squared_error(y_test,
gradient_descent.predict(x_test))