中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):SIGIR 2026

SIGIR 2026

The annual SIGIR conference is the major international forum for the presentation of new research results, and the demonstration of new systems and techniques, in the broad field of information retrieval (IR). The 49th ACM SIGIR conference will be run as an in-person conference from July 20 to 24, 2026 in Melbourne | Naarm, Australia.

重要信息

CCF推荐:A(数据库/数据挖掘/内容检索)

录用率:22.3%(239/1071,2025年Full Papers)

时间地点:2026年7月20日-墨尔本·澳大利亚

截稿时间:2026年1月15日

大会官网:https://sigir2026.org/en-AU

Call for Papers

Search and Ranking. Research on core IR algorithmic topics.

System, Efficiency and Scalability. Research on search system aspects that relate to the efficiency of the system and/or its scalability.

Recommender Systems. Research focusing on recommender systems, rich content representations and content analysis for recommendation.

Machine Learning for IR. Research bridging ML and IR.

Natural Language Processing for IR. Research bridging NLP and IR.

Conversational or Agentic IR. Research focusing on developing intelligent IR systems that can understand and respond to users' natural language queries and provide relevant information or recommendations through interactive conversations.

Humans and Interfaces. Research into user-centric aspects of IR including user interfaces, behavior modeling, privacy, interactive systems.

Datasets, Benchmarks, and Evaluations for IR. Research that focuses on the measurement and evaluation of IR systems.

Fairness, Accountability, Transparency, Ethics, and Explainability (FATE) in IR. Research on aspects of FATE and bias in search systems and related applications.

Multi Modal IR. Theoretical, algorithmic or novel practical solutions addressing problems across the domain of multimedia and IR.

Domain-Specific IR Applications. Research focusing on domain-specific IR challenges.

Other IR Topics. Any IR Research that does not fall into any of the areas above.

Submission Guidelines

Submissions of full research papers must be in English, in PDF format, and be at most 9 pages (including figures, tables, proofs, appendixes, acknowledgments, and any content except references) in length, with unrestricted space for references, in the current ACM two-column conference format.

Suitable LaTeX, Word, and Overleaf templates are available from the ACM Website (use "sigconf" proceedings template for LaTeX and the Interim Template for Word). ACM's CCS concepts and keywords are required for review.

For LaTeX, the following should be used:

\documentclass[sigconf,natbib=true,anonymous=true]{acmart}

Submissions must be anonymous and should be submitted electronically.

相关推荐
zhangfeng113313 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授13 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理
OpenBayes14 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
Eloudy15 小时前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc
AEIC学术交流中心16 小时前
【快速EI检索 | SPIE出版】2026年机器学习与大模型国际学术会议(ICMLM 2026)
人工智能·机器学习
陈天伟教授16 小时前
人工智能应用- 语言理解:09.大语言模型
人工智能·语言模型·自然语言处理
Daydream.V17 小时前
逻辑回归实例问题解决(LogisticRegression)
算法·机器学习·逻辑回归
纤纡.17 小时前
逻辑回归实战进阶:交叉验证与采样技术破解数据痛点(二)
算法·机器学习·逻辑回归
岱宗夫up17 小时前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
deep_drink18 小时前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵