中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):SIGIR 2026

SIGIR 2026

The annual SIGIR conference is the major international forum for the presentation of new research results, and the demonstration of new systems and techniques, in the broad field of information retrieval (IR). The 49th ACM SIGIR conference will be run as an in-person conference from July 20 to 24, 2026 in Melbourne | Naarm, Australia.

重要信息

CCF推荐:A(数据库/数据挖掘/内容检索)

录用率:22.3%(239/1071,2025年Full Papers)

时间地点:2026年7月20日-墨尔本·澳大利亚

截稿时间:2026年1月15日

大会官网:https://sigir2026.org/en-AU

Call for Papers

Search and Ranking. Research on core IR algorithmic topics.

System, Efficiency and Scalability. Research on search system aspects that relate to the efficiency of the system and/or its scalability.

Recommender Systems. Research focusing on recommender systems, rich content representations and content analysis for recommendation.

Machine Learning for IR. Research bridging ML and IR.

Natural Language Processing for IR. Research bridging NLP and IR.

Conversational or Agentic IR. Research focusing on developing intelligent IR systems that can understand and respond to users' natural language queries and provide relevant information or recommendations through interactive conversations.

Humans and Interfaces. Research into user-centric aspects of IR including user interfaces, behavior modeling, privacy, interactive systems.

Datasets, Benchmarks, and Evaluations for IR. Research that focuses on the measurement and evaluation of IR systems.

Fairness, Accountability, Transparency, Ethics, and Explainability (FATE) in IR. Research on aspects of FATE and bias in search systems and related applications.

Multi Modal IR. Theoretical, algorithmic or novel practical solutions addressing problems across the domain of multimedia and IR.

Domain-Specific IR Applications. Research focusing on domain-specific IR challenges.

Other IR Topics. Any IR Research that does not fall into any of the areas above.

Submission Guidelines

Submissions of full research papers must be in English, in PDF format, and be at most 9 pages (including figures, tables, proofs, appendixes, acknowledgments, and any content except references) in length, with unrestricted space for references, in the current ACM two-column conference format.

Suitable LaTeX, Word, and Overleaf templates are available from the ACM Website (use "sigconf" proceedings template for LaTeX and the Interim Template for Word). ACM's CCS concepts and keywords are required for review.

For LaTeX, the following should be used:

\documentclass[sigconf,natbib=true,anonymous=true]{acmart}

Submissions must be anonymous and should be submitted electronically.

相关推荐
Hcoco_me2 小时前
大模型面试题88:cuda core的数量 与 开发算子中实际使用的线程 关系是什么?过量线程会发生什么情况?
人工智能·深度学习·机器学习·chatgpt·职场和发展·机器人
油泼辣子多加2 小时前
【信创】华为昇腾大模型训练
人工智能·机器学习·数据挖掘
audyxiao0012 小时前
会议热点扫描|机器学习顶级会议ICML 2025的研究热点与最新趋势分析
人工智能·机器学习·icml·会议热点
LDG_AGI2 小时前
【机器学习】深度学习推荐系统(三十一):X For You Feed 全新推荐系统技术架构深度解析
人工智能·深度学习·算法·机器学习·架构·推荐算法
Nowl2 小时前
基于langchain的个人情感陪伴agent
人工智能·机器学习·langchain
啊阿狸不会拉杆2 小时前
《机器学习》 第 9 章 - 深度强化学习
人工智能·算法·机器学习·计算机视觉·ai·ml
hjs_deeplearning3 小时前
文献阅读篇#12:自动驾驶中的基础模型:场景生成与场景分析综述(3)
人工智能·机器学习·自动驾驶
2501_948120153 小时前
中职动漫设计与制作专业实训方案研究
前端·人工智能·语言模型·自然语言处理·架构
Coding茶水间3 小时前
基于深度学习的红外镜头下的行人识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习