多模态-8 YOLO World

这篇文章介绍多模态模型-YOLO World

多模态基础知识介绍可以看:多模态-1 基础理论

Grounding DINO介绍可以看:多模态-7 Grounding DINO

CLIP介绍可以看:多模态-2 CLIP

YOLO World原论文:《YOLO-World: Real-Time Open-Vocabulary Object Detection》

YOLO World类似Grounding DINO,也是解决开放集合目标检测的问题,但是使用的图像编码器是YOLO(具体是YOLO V8),相比于以往的开放集合目标检测模型更轻量,推理部署阶段可进一步配合重参数化的技巧提升推理速度,使YOLO World接近于原始YOLO的速度,消费级显卡上可达70+ FPS。

一 模型结构与训练

YOLO World整体结构如下:

输入依旧是<图像,文本>,但是相比于Grounding DINO,YOLO World输入的文本是类别名称列表,而Grounding DINO是任意格式的文本。

YOLO-World 更适合**"我知道要检测什么,只是模型没学过"的场景,而Grounding DINO 更适合"我用语言描述我想找的东西"**的场景。

将图片输入到YOLO的Backbone中进行图像特征提取,将类别文本输入到Text Encoder中进行文本编码特征提取(论文中使用的Text Encoder是CLIP),利用Vision-Language PAN进行图像特征、文本编码特征的语义对齐,将语义对齐后的特征输入到Text Contrastive Head、Box Head中得到预测类别和矩形框坐标输出,和真实标签计算损失反向梯度传播训练整个YOLO World。

1.1 Text Encoder

利用CLIP对输入的文本类别列表,如[cat,dog,apple],进行特征编码表示,得到[C,D]大小的编码表示矩阵,其中C是类别的个数、D是文本特征编码表示的嵌入向量维度。如果输入的是一整段的文本,则利用n-gram方法从文本中提取出文本类别列表,再进行特征编码表示,比如输入的是"a cat and a dog eat apple",需要借助n-gram方法从这段文本中提取出来要检测的类别名词,然后形成类别名称列表再输入到CLIP中进行特征编码表示。

1.2 Vision-Language PAN

1.3 训练

二 实验结果

相关推荐
山顶夕景1 天前
【LLM】多模态智能体Kimi-K2.5模型
llm·agent·多模态
司南OpenCompass2 天前
当模型开始“记住”评测,如何用动态数据对抗污染?(上篇)
人工智能·大模型·多模态模型·大模型评测·司南评测
阿杰学AI3 天前
AI核心知识72——大语言模型之Native Multimodality(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·语音识别·多模态·原生多模态
羊城迷鹿3 天前
从LoRA到OFT:Qwen2.5-VL在昇腾910B与4090上的多模态微调实践与踩坑记录
大模型·微调·多模态·qwen·llamafactory·oft
孙琦Ray3 天前
GitHub开源项目月报 · 2026年1月 · 开源AI代理热榜解读
开源·软件开发·多模态·rag·知识管理·ai代理·终端桌面
AI 菌4 天前
DeepSeek-OCR v2 解读
人工智能·大模型·ocr·多模态
山顶夕景5 天前
【VLM】Visual Merit or Linguistic Crutch? 看DeepSeek-OCR
大模型·llm·ocr·多模态
勇气要爆发6 天前
【AI扫盲】大模型(LLM)原理详解:从 DeepSeek 到 GPT-5 全面解析 (2026最新版)
人工智能·gpt·机器学习·llm·微调·多模态·预训练
余俊晖8 天前
多模态文档解析开源进展:端到端OCR模型LightOnOCR-2-1B架构、效果测试
人工智能·自然语言处理·多模态