DP-GAN-判别器代码

将输出的rgb作为输入,输入到判别器中。接着执行一个for循环,看一下body_down列表的组成和x经过body_down之后的值。

body_down是由残差块D组成的列表:

残差块的参数为:(3,128),(128,128),(128,256),(256,256),(256,512),(512,512)/-1,根据i==0,判断first参数的True或者False。

残差块组成:

x首先进过shortcut。假设执行第一次for循环,通道(3,128)/-1/True.

将RGB下采样两倍。

接着in=3,out=128,learned_shortcut=True。

x再经过一个卷积:

接着输出x。执行完shortcut再执行卷积:

conv1输出一个mid_layer,conv2输出最终的out.

因为x在开始进行了下采样,为了能够相加,这里也对dx进下采样。

接着执行第二个块,输入和输出通道都是128.只执行下采样两倍。

后面的四个根据通道是否相等只执行如下操作:

这样encoder_res里面有六个值,将第四层和第六层输出放在dis_list中:

接着取出dis_list进行处理:

self.dis列表里面存放了两个nn.Sequential,分别处理dis_list的第一第二个。

python 复制代码
        self.dis = nn.ModuleList([
                    nn.Sequential(
                            nn.Conv2d(256, 64, 3, padding=1, stride=2),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 1, 3, padding=1)
                        ),
                    nn.Sequential(
                            nn.Conv2d(512, 64, 3, padding=1, stride=2),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 1, 3, padding=1)
                        )
            ])

在Sequential内部,首先将输入下采样两倍,然后三个卷积进行特征提取操作,最后卷积输除通道为1,输出Fake 或者real的概率。对应于:

接着将encoder最后一个输出作为decoder输入进行上采样:

残差块参数为:(512,512)/1,将输入上采样两倍。

剩下的五次卷积,分别倒着取列表里面的通道:

将decoder的值和encoder拼接,上采样6次,添加到return_feats列表中。

将最后一层输出值进过一个卷积,输出通道为类别通道数:

最后将最后一层输出值,encoder两个中间变量值,decoder的5个上采样中间值作为输出。

相关推荐
舒一笑22 分钟前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq1 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖1 小时前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer2 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor2 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI4 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154464 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me074 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao5 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算5 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源