DP-GAN-判别器代码

将输出的rgb作为输入,输入到判别器中。接着执行一个for循环,看一下body_down列表的组成和x经过body_down之后的值。

body_down是由残差块D组成的列表:

残差块的参数为:(3,128),(128,128),(128,256),(256,256),(256,512),(512,512)/-1,根据i==0,判断first参数的True或者False。

残差块组成:

x首先进过shortcut。假设执行第一次for循环,通道(3,128)/-1/True.

将RGB下采样两倍。

接着in=3,out=128,learned_shortcut=True。

x再经过一个卷积:

接着输出x。执行完shortcut再执行卷积:

conv1输出一个mid_layer,conv2输出最终的out.

因为x在开始进行了下采样,为了能够相加,这里也对dx进下采样。

接着执行第二个块,输入和输出通道都是128.只执行下采样两倍。

后面的四个根据通道是否相等只执行如下操作:

这样encoder_res里面有六个值,将第四层和第六层输出放在dis_list中:

接着取出dis_list进行处理:

self.dis列表里面存放了两个nn.Sequential,分别处理dis_list的第一第二个。

python 复制代码
        self.dis = nn.ModuleList([
                    nn.Sequential(
                            nn.Conv2d(256, 64, 3, padding=1, stride=2),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 1, 3, padding=1)
                        ),
                    nn.Sequential(
                            nn.Conv2d(512, 64, 3, padding=1, stride=2),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 64, 3, padding=1),
                            nn.BatchNorm2d(64),
                            nn.LeakyReLU(0.2, False),
                            nn.Conv2d(64, 1, 3, padding=1)
                        )
            ])

在Sequential内部,首先将输入下采样两倍,然后三个卷积进行特征提取操作,最后卷积输除通道为1,输出Fake 或者real的概率。对应于:

接着将encoder最后一个输出作为decoder输入进行上采样:

残差块参数为:(512,512)/1,将输入上采样两倍。

剩下的五次卷积,分别倒着取列表里面的通道:

将decoder的值和encoder拼接,上采样6次,添加到return_feats列表中。

将最后一层输出值进过一个卷积,输出通道为类别通道数:

最后将最后一层输出值,encoder两个中间变量值,decoder的5个上采样中间值作为输出。

相关推荐
聚客AI44 分钟前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545641 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2371 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro2 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~2 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进3 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木3 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan773 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归