spark的eventLog日志分析

  1. 查找满足指定条件的app_id
  2. 查询条件: 表名、时间、节点名
  3. 时间限定: 最好适当放大, 不知道什么原因有点不准
  4. eventLog的存放路径: spark.history.fs.logDirectory

1. spark-sql

  • 先限定时间段;
  • 数据是逐行读入的, 但 app_id要按整个文件过滤, 按每个条件打标;
  • 按app_id粒度聚合, 查找符合条件的数据;
sql 复制代码
-- 设定时区
set spark.sql.session.timeZone=GMT+8;

-- 创建数据源视图
create temporary view view_name using text options ('path'='hdfs://hdfs-cluster/spark-history/*', 'modifiedAfter'='2023-08-21T08:00:00', 'modifiedBefore'='2023-08-21T14:00:00' );

with tmp as ( -- 打标数据
    select
       input_file_name() as file_name,
       if( value like '%tbl_name%', 1, 0) as table_name,
       if( value like '%core-1-7%', 1, 0) as host_01,
       if( value like '%core-1-10%', 1, 0) as host_02
    from
        view_name
),
tmp2 as ( -- 汇总到app_id粒度
    select
       file_name,
       sum(table_name) as table_name,
       sum(host_01) as host_01,
       sum(host_02) as host_02
    from
        tmp
    group by
        file_name
)
select
    *
from
    tmp2
where
    table_name > 0
order by
    file_name
;

2. 整文件读取

  • 先初步过滤app_id;
  • 整个文件读取成一行;
  • 按条件进行过滤;
Scala 复制代码
import spark.implicits._

// 寻找可能的APP_ID
val sql_create_view =
    """
      |create temporary view view_name using text options ('path'='hdfs://hdfs-cluster/spark-history/*', 'modifiedAfter'='2023-08-21T00:00:00', 'modifiedBefore'='2023-08-21T23:00:00' )
      |""".stripMargin
val sql_filter_app_id =
    """
      |select
      |   split( input_file_name(), 'history/')[1]  as file_name
      |from
      |    view_name
      |where
      |    value like '%trandw.dwd_log_app_open_di%'
      |group by
      |    split( input_file_name(), 'history/')[1]
      |""".stripMargin
spark.sql(sql_create_view)
val df_app_ids = spark.sql(sql_filter_app_id)
val app_ids = df_app_ids.collect().map(_.getString(0)).mkString(",")

// 整个文件读取成一行
val rdd = spark.sparkContext.wholeTextFiles(s"hdfs://hdfs-cluster/spark-history/{${app_ids}}",20).repartition(12)
val df = rdd.toDF("file_name", "value")
df.createOrReplaceTempView("tmp")

// 过滤数据
val sql_str =
    """
      |select
      |   file_name
      |from
      |    tmp
      |where
      |    value like '%tbl_name%'
      |    and value like '%core-1-7%'
      |    and  value like '%core-1-10%'
      |""".stripMargin

spark.sql(sql_str).show(1)
相关推荐
计算机毕业设计木哥15 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
IT毕设梦工厂17 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB1 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐1 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
孟意昶1 天前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
智海观潮1 天前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
盛源_011 天前
hadoop的api操作对象存储
hdfs·spark
欧阳方超2 天前
Spark(1):不依赖Hadoop搭建Spark环境
大数据·hadoop·spark
Light602 天前
领码SPARK融合平台 · TS × Java 双向契约 —— 性能与治理篇|缓存分段与版本秩序
低代码·缓存·spark