Spark写数据到Doris报错node and exceeded the max retry times

用spark dataframe向doris写数据时,报下面错误:

Failed to load data on BE: http://192.168.50.10:18040/api/mydb/dwd_virtual_table/_stream_load? node and exceeded the max retry times.

发现表没写入成功。刚开始很困惑,后来发现是 dataFrame中的字段和目标表不一致 。

这种提示很不友好,有没有更好方式提示,方法是有的,可以用jdbc写入,发现错误时可以看到具体的提示。代码参考如下:

复制代码
def writeByJDBC(dataframe: DataFrame, dorisTable: String): Unit = {
    dataframe.write.format("jdbc")
      .mode(SaveMode.Append)
      .option("driver", "com.mysql.jdbc.Driver")
      .option("url", "jdbc:mysql://" + DORIS_HOST + ":9030/" +DATABASE_NAME + "?rewriteBatchedStatements=false")
      .option("batchsize", "" + WRITE_BATCH_SIZE)
      .option("user", DORIS_USER)
      .option("password", DORIS_PASSWORD)
      .option("isolationLevel", "NONE")
      //  .option("doris.write.fields","case_id,defendant_name,finance_name,mediation_name,mediator_name,dt")
      .option("dbtable", dorisTable)
      .save()
  }

不过这种方式还是没有Spark Doris Connector的方式写效率高,可以用上面jdbc方式调试,没问题再切换 Spark Doris Connector 方式:

def writeByDoris(dataframe: DataFrame, dorisTable: String): Unit = {

dataframe.write.format("doris")

.option("doris.table.identifier", dorisTable)

.option("doris.fenodes", DORIS_HOST + ":" + DORIS_FE_HTTP_PORT)

.option("user", DORIS_USER)

.option("password", DORIS_PASSWORD)

.option("sink.batch.size", WRITE_BATCH_SIZE)

.option("sink.max-retries", 3)

.option("doris.request.retries", 6)

.option("doris.request.retries", 100)

.option("doris.request.connect.timeout.ms", 60000)

.save()

}

相关推荐
漂流瓶6666663 小时前
运行Spark程序-在shell中运行 --SparkConf 和 SparkContext
大数据·分布式·spark
lqlj22334 小时前
RDD案例数据清洗
大数据·分布式·spark
心仪悦悦5 小时前
RDD的自定义分区器
大数据·分布式·spark
Freedom℡5 小时前
在scala中sparkSQL连接masql并添加新数据
spark
我爱写代码?19 小时前
MapReduce架构-打包运行
大数据·spark
MZWeiei20 小时前
Spark SQL 运行架构详解(专业解释+番茄炒蛋例子解读)
大数据·分布式·sql·架构·spark
.Rw1 天前
Hadoop区别
spark
yyywoaini~1 天前
spark数据压缩
spark
只因只因爆1 天前
spark数据清洗
大数据·分布式·spark
mini榴莲炸弹1 天前
Spark的基本介绍
spark