pytorch代码实现之CoordConv卷积

CoordConv卷积

在深度学习领域,几乎没有什么想法能像卷积那样产生如此大的影响。对于任何涉及像素或空间表示的问题,普遍的直觉认为卷积神经网络可能是合适的。在本文中,我们通过看似平凡的坐标变换问题展示了一个惊人的反例,该问题只需要学习(x, y)笛卡尔空间中的坐标与单热像素空间中的坐标之间的映射。虽然卷积网络似乎适合这项任务,但我们表明它们失败得很明显。

CoordConv的工作原理是通过使用额外的坐标通道让卷积访问自己的输入坐标。在不牺牲普通卷积的计算和参数效率的情况下,CoordConv允许网络根据最终任务的需要学习完全的平移不变性或不同程度的平移依赖性。CoordConv解决了坐标变换问题,具有很好的泛化性,比convolution的参数少10-100倍,速度快150倍。

原文地址:An intriguing failing of convolutional neural networks and the CoordConv solution

代码实现:

matlab 复制代码
class AddCoords(nn.Module):
    def __init__(self, with_r=False):
        super().__init__()
        self.with_r = with_r

    def forward(self, input_tensor):
        """
        Args:
            input_tensor: shape(batch, channel, x_dim, y_dim)
        """
        batch_size, _, x_dim, y_dim = input_tensor.size()

        xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
        yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)

        xx_channel = xx_channel.float() / (x_dim - 1)
        yy_channel = yy_channel.float() / (y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1

        xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
        yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)

        ret = torch.cat([
            input_tensor,
            xx_channel.type_as(input_tensor),
            yy_channel.type_as(input_tensor)], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
            ret = torch.cat([ret, rr], dim=1)

        return ret

class CoordConv(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, with_r=False):
        super().__init__()
        self.addcoords = AddCoords(with_r=with_r)
        in_channels += 2
        if with_r:
            in_channels += 1
        self.conv = Conv(in_channels, out_channels, k=kernel_size, s=stride)

    def forward(self, x):
        x = self.addcoords(x)
        x = self.conv(x)
        return x
相关推荐
飞哥数智坊3 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI5 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
databook6 小时前
Manim实现闪光轨迹特效
后端·python·动效
新智元7 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元7 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心7 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术7 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
Juchecar8 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
YourKing8 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_8 小时前
NCCL的用户缓冲区注册
人工智能