pytorch代码实现之CoordConv卷积

CoordConv卷积

在深度学习领域,几乎没有什么想法能像卷积那样产生如此大的影响。对于任何涉及像素或空间表示的问题,普遍的直觉认为卷积神经网络可能是合适的。在本文中,我们通过看似平凡的坐标变换问题展示了一个惊人的反例,该问题只需要学习(x, y)笛卡尔空间中的坐标与单热像素空间中的坐标之间的映射。虽然卷积网络似乎适合这项任务,但我们表明它们失败得很明显。

CoordConv的工作原理是通过使用额外的坐标通道让卷积访问自己的输入坐标。在不牺牲普通卷积的计算和参数效率的情况下,CoordConv允许网络根据最终任务的需要学习完全的平移不变性或不同程度的平移依赖性。CoordConv解决了坐标变换问题,具有很好的泛化性,比convolution的参数少10-100倍,速度快150倍。

原文地址:An intriguing failing of convolutional neural networks and the CoordConv solution

代码实现:

matlab 复制代码
class AddCoords(nn.Module):
    def __init__(self, with_r=False):
        super().__init__()
        self.with_r = with_r

    def forward(self, input_tensor):
        """
        Args:
            input_tensor: shape(batch, channel, x_dim, y_dim)
        """
        batch_size, _, x_dim, y_dim = input_tensor.size()

        xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
        yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)

        xx_channel = xx_channel.float() / (x_dim - 1)
        yy_channel = yy_channel.float() / (y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1

        xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
        yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)

        ret = torch.cat([
            input_tensor,
            xx_channel.type_as(input_tensor),
            yy_channel.type_as(input_tensor)], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
            ret = torch.cat([ret, rr], dim=1)

        return ret

class CoordConv(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, with_r=False):
        super().__init__()
        self.addcoords = AddCoords(with_r=with_r)
        in_channels += 2
        if with_r:
            in_channels += 1
        self.conv = Conv(in_channels, out_channels, k=kernel_size, s=stride)

    def forward(self, x):
        x = self.addcoords(x)
        x = self.conv(x)
        return x
相关推荐
华新嘉华DTC创新营销1 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain2 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t3 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华4 小时前
机器学习-数据标注
人工智能·机器学习
paid槮5 小时前
机器视觉之图像处理篇
图像处理·opencv·计算机视觉
九章云极AladdinEdu5 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师6 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞6 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8287 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡7 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d