pytorch代码实现之CoordConv卷积

CoordConv卷积

在深度学习领域,几乎没有什么想法能像卷积那样产生如此大的影响。对于任何涉及像素或空间表示的问题,普遍的直觉认为卷积神经网络可能是合适的。在本文中,我们通过看似平凡的坐标变换问题展示了一个惊人的反例,该问题只需要学习(x, y)笛卡尔空间中的坐标与单热像素空间中的坐标之间的映射。虽然卷积网络似乎适合这项任务,但我们表明它们失败得很明显。

CoordConv的工作原理是通过使用额外的坐标通道让卷积访问自己的输入坐标。在不牺牲普通卷积的计算和参数效率的情况下,CoordConv允许网络根据最终任务的需要学习完全的平移不变性或不同程度的平移依赖性。CoordConv解决了坐标变换问题,具有很好的泛化性,比convolution的参数少10-100倍,速度快150倍。

原文地址:An intriguing failing of convolutional neural networks and the CoordConv solution

代码实现:

matlab 复制代码
class AddCoords(nn.Module):
    def __init__(self, with_r=False):
        super().__init__()
        self.with_r = with_r

    def forward(self, input_tensor):
        """
        Args:
            input_tensor: shape(batch, channel, x_dim, y_dim)
        """
        batch_size, _, x_dim, y_dim = input_tensor.size()

        xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
        yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)

        xx_channel = xx_channel.float() / (x_dim - 1)
        yy_channel = yy_channel.float() / (y_dim - 1)

        xx_channel = xx_channel * 2 - 1
        yy_channel = yy_channel * 2 - 1

        xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
        yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)

        ret = torch.cat([
            input_tensor,
            xx_channel.type_as(input_tensor),
            yy_channel.type_as(input_tensor)], dim=1)

        if self.with_r:
            rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
            ret = torch.cat([ret, rr], dim=1)

        return ret

class CoordConv(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, with_r=False):
        super().__init__()
        self.addcoords = AddCoords(with_r=with_r)
        in_channels += 2
        if with_r:
            in_channels += 1
        self.conv = Conv(in_channels, out_channels, k=kernel_size, s=stride)

    def forward(self, x):
        x = self.addcoords(x)
        x = self.conv(x)
        return x
相关推荐
飞哥数智坊9 分钟前
当你还在用 AI 写周报,别人的 AI 已经在炒币炒股了
人工智能
Juchecar18 分钟前
翻译:软件开发的演进:从机器码到 AI 编排
人工智能
字节数据平台24 分钟前
火山引擎发布Data Agent新能力,推动用户洞察进入“智能3.0时代”
大数据·人工智能
盈电智控25 分钟前
体力劳动反而更难被AI取代?物联网科技如何守护最后的劳动阵地
开发语言·人工智能·python
隔壁阿布都27 分钟前
Spring Boot中的Optional如何使用
开发语言·spring boot·python
也许是_1 小时前
大模型原理之深度学习与神经网络入门
人工智能·深度学习·神经网络
数智顾问1 小时前
(111页PPT)大型集团IT治理体系规划详细解决方案(附下载方式)
大数据·人工智能
海棠AI实验室1 小时前
AI代发货(DropShopping)革命:构建自动化电商帝国终极指南
运维·人工智能·自动化
谢景行^顾1 小时前
深度学习--激活函数
人工智能·python·机器学习
三千院本院1 小时前
LlaMA_Factory实战微调Qwen-LLM大模型
人工智能·python·深度学习·llama