深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

1、最近邻插值法

*最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素

  • 优点:实现简单,计算速度快
  • 缺点 :插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插值算法,例如:双线性插值、三次插值。
  • 代码示例:

python 复制代码
import numpy as np
from PIL import Image


def nearest_neighbor_interpolation(image,scale_factor):
    """
        image:输入图像数组
        scale_factor:图像缩放因子
    
    """

    # 得到输入图像的高与宽
    height,width=image.shape[:2]
    # 计算输出图像的高与宽
    out_height=int(height * scale_factor)
    out_width=int(width * scale_factor)

    # 创建爱你输出图像
    output_imaage=np.zeros((out_height,out_width,3),dtype=np.uint8)
    print(output_imaage.shape)

    # 遍历输出的每个像素,分别计算其在图像中最近邻的像素坐标,并将其像素值赋给当前像素
    for out_y in range(out_height):
        for out_x in range(out_width):
            # 计算当前像素在输入图像中的坐标
            input_x=int(round(out_x / scale_factor))
            input_y=int(round(out_y / scale_factor))
            # 判断计算出来的输入像素坐标是否越界,如果越界则赋值为边界像素
            input_x=min(input_x,width - 1)
            input_y=min(input_y,height - 1)
            # 将输入图像的像素值赋值给输出图像的对应位置上的像素值
            output_imaage[out_y,out_x]=image[input_y,input_x]
    
    return output_imaage




# 读取原始图像
input_image=Image.open("./test_image.PNG").convert("RGB")
print(input_image)

image_array=np.array(input_image)
print(image_array.shape)


output_imaage=nearest_neighbor_interpolation(image_array,5.0)


out_image_pil=Image.fromarray(output_imaage.astype("uint8"))
print(out_image_pil)

out_image_pil.save("./result.jpg")   # 保存数据图像

结果:

相关推荐
.柒宇.4 小时前
力扣hot100----15.三数之和(java版)
java·数据结构·算法·leetcode
leafff1234 小时前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
杰克尼5 小时前
二分查找为什么总是写错
java·数据结构·算法
Liudef065 小时前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
珺毅同学6 小时前
YOLO输出COCO指标及YOLOv12报错
python·深度学习·yolo
格林威7 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制7 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回7 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh8 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
FL16238631298 小时前
智慧交通红绿灯检测数据集VOC+YOLO格式1215张3类别
深度学习·yolo·机器学习