深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

1、最近邻插值法

*最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素

  • 优点:实现简单,计算速度快
  • 缺点 :插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插值算法,例如:双线性插值、三次插值。
  • 代码示例:

python 复制代码
import numpy as np
from PIL import Image


def nearest_neighbor_interpolation(image,scale_factor):
    """
        image:输入图像数组
        scale_factor:图像缩放因子
    
    """

    # 得到输入图像的高与宽
    height,width=image.shape[:2]
    # 计算输出图像的高与宽
    out_height=int(height * scale_factor)
    out_width=int(width * scale_factor)

    # 创建爱你输出图像
    output_imaage=np.zeros((out_height,out_width,3),dtype=np.uint8)
    print(output_imaage.shape)

    # 遍历输出的每个像素,分别计算其在图像中最近邻的像素坐标,并将其像素值赋给当前像素
    for out_y in range(out_height):
        for out_x in range(out_width):
            # 计算当前像素在输入图像中的坐标
            input_x=int(round(out_x / scale_factor))
            input_y=int(round(out_y / scale_factor))
            # 判断计算出来的输入像素坐标是否越界,如果越界则赋值为边界像素
            input_x=min(input_x,width - 1)
            input_y=min(input_y,height - 1)
            # 将输入图像的像素值赋值给输出图像的对应位置上的像素值
            output_imaage[out_y,out_x]=image[input_y,input_x]
    
    return output_imaage




# 读取原始图像
input_image=Image.open("./test_image.PNG").convert("RGB")
print(input_image)

image_array=np.array(input_image)
print(image_array.shape)


output_imaage=nearest_neighbor_interpolation(image_array,5.0)


out_image_pil=Image.fromarray(output_imaage.astype("uint8"))
print(out_image_pil)

out_image_pil.save("./result.jpg")   # 保存数据图像

结果:

相关推荐
阿坡RPA3 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049933 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c6 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清6 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员7 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物7 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技