时间序列预测 Graph-WaveNet:Graph WaveNet for Deep Spatial-Temporal Graph Modeling

Graph-WaveNet

    • [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](#Graph WaveNet for Deep Spatial-Temporal Graph Modeling)
    • 1.概述
    • [2.提出问题 & 解决策略 & 模型结构](#2.提出问题 & 解决策略 & 模型结构)
    • 3.实验结果

**

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

**

1.概述

时空图建模是分析系统中各组成部分的空间关系和时间趋势的一项重要任务。现有的方法大多捕获固定图结构上的空间依赖,假设实体之间的底层关系是预先确定的。然而,明确的图结构(关系)并不一定反映真实的依赖关系,由于数据中的连接不完整,可能会丢失真实的关系。此外,现有的方法无法捕获时间趋势,因为这些方法中使用的rnn或cnn无法捕获长时间序列。

为了克服这些限制,我们在本文中提出了一种基于CNN的新的图神经网络架构Graph-WaveNet,用于时空图建模。通过建立一种新的自适应邻接矩阵并通过node embedding学习该矩阵 ,该模型可以准确地捕获数据中隐藏的空间依赖。通过a stacked dilated casual 1D convolution component 实现感受野随层数指数级增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝地集成在一个统一的框架中,整个框架以端到端的方式学习。

在metro - la和PEMS-BAY两个公共交通网络数据集上的实验结果证明了该算法的优越性能。

2.提出问题 & 解决策略 & 模型结构

3.实验结果


相关推荐
Liudef067 分钟前
MCP协议技术解析:AI时代的通信基础设施革命
人工智能·mcp
火山引擎开发者社区8 分钟前
火山引擎Data Agent全面上线售卖!以企业级数据智能体,重构数据应用范式
人工智能·重构·火山引擎
Json____9 分钟前
使用python的 FastApi框架开发图书管理系统-前后端分离项目分享
开发语言·python·fastapi·图书管理系统·图书·项目练习
安思派Anspire15 分钟前
LangGraph + MCP + Ollama:构建强大代理 AI 的关键(二)
人工智能·后端·python
站大爷IP19 分钟前
Python文件与目录比较全攻略:从基础操作到性能优化
python
运器12328 分钟前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程
开发者工具分享43 分钟前
缺乏项目进度可视化手段,如何提升展示效果
人工智能
慧星云1 小时前
ComfyUI工作流 :一键二次元角色转真人
人工智能·云计算·aigc
聚客AI1 小时前
⚡ 突破LLM三大局限:LangChain架构核心解析与最佳实践
人工智能·langchain·llm
Sui_Network1 小时前
tBTC 现已上线 Sui,带来 5 亿美元的比特币流动性
人工智能·物联网·web3·区块链·量子计算