时间序列预测 Graph-WaveNet:Graph WaveNet for Deep Spatial-Temporal Graph Modeling

Graph-WaveNet

    • [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](#Graph WaveNet for Deep Spatial-Temporal Graph Modeling)
    • 1.概述
    • [2.提出问题 & 解决策略 & 模型结构](#2.提出问题 & 解决策略 & 模型结构)
    • 3.实验结果

**

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

**

1.概述

时空图建模是分析系统中各组成部分的空间关系和时间趋势的一项重要任务。现有的方法大多捕获固定图结构上的空间依赖,假设实体之间的底层关系是预先确定的。然而,明确的图结构(关系)并不一定反映真实的依赖关系,由于数据中的连接不完整,可能会丢失真实的关系。此外,现有的方法无法捕获时间趋势,因为这些方法中使用的rnn或cnn无法捕获长时间序列。

为了克服这些限制,我们在本文中提出了一种基于CNN的新的图神经网络架构Graph-WaveNet,用于时空图建模。通过建立一种新的自适应邻接矩阵并通过node embedding学习该矩阵 ,该模型可以准确地捕获数据中隐藏的空间依赖。通过a stacked dilated casual 1D convolution component 实现感受野随层数指数级增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝地集成在一个统一的框架中,整个框架以端到端的方式学习。

在metro - la和PEMS-BAY两个公共交通网络数据集上的实验结果证明了该算法的优越性能。

2.提出问题 & 解决策略 & 模型结构

3.实验结果


相关推荐
捕风捉你4 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤4 小时前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI4 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
极新5 小时前
智面玄赏联合创始人李男:人工智能赋能招聘行业——从效率革新到平台经济重构|2025极新AIGC峰会演讲实录
人工智能·百度
乾元5 小时前
ISP 级别的异常洪泛检测与防护——大流量事件的 AI 自动识别与响应工程
运维·网络·人工智能·安全·web安全·架构
机器之心5 小时前
多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案
人工智能·openai
lixzest5 小时前
C++上位机软件开发入门深度学习
开发语言·c++·深度学习
linhx5 小时前
【AIGC工作流】解构AI短剧生产管线:从手动调用DeepSeek+MJ,到Agent一站式自动化的演进
人工智能·自动化·aigc
AI模块工坊5 小时前
【AAAI 2026】即插即用 Spikingformer 重构残差连接,打造高效脉冲 Transformer
深度学习·重构·transformer
于越海5 小时前
材料电子理论核心四个基本模型的python编程学习
开发语言·笔记·python·学习·学习方法