时间序列预测 Graph-WaveNet:Graph WaveNet for Deep Spatial-Temporal Graph Modeling

Graph-WaveNet

    • [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](#Graph WaveNet for Deep Spatial-Temporal Graph Modeling)
    • 1.概述
    • [2.提出问题 & 解决策略 & 模型结构](#2.提出问题 & 解决策略 & 模型结构)
    • 3.实验结果

**

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

**

1.概述

时空图建模是分析系统中各组成部分的空间关系和时间趋势的一项重要任务。现有的方法大多捕获固定图结构上的空间依赖,假设实体之间的底层关系是预先确定的。然而,明确的图结构(关系)并不一定反映真实的依赖关系,由于数据中的连接不完整,可能会丢失真实的关系。此外,现有的方法无法捕获时间趋势,因为这些方法中使用的rnn或cnn无法捕获长时间序列。

为了克服这些限制,我们在本文中提出了一种基于CNN的新的图神经网络架构Graph-WaveNet,用于时空图建模。通过建立一种新的自适应邻接矩阵并通过node embedding学习该矩阵 ,该模型可以准确地捕获数据中隐藏的空间依赖。通过a stacked dilated casual 1D convolution component 实现感受野随层数指数级增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝地集成在一个统一的框架中,整个框架以端到端的方式学习。

在metro - la和PEMS-BAY两个公共交通网络数据集上的实验结果证明了该算法的优越性能。

2.提出问题 & 解决策略 & 模型结构

3.实验结果


相关推荐
数据知道11 分钟前
【Flask】一文掌握 Flask 基础用法
数据库·后端·python·flask·python web
Light6013 分钟前
MCP协议:CAD设计的“AI大脑”革命——从图纸到智能决策的全链路跃迁
人工智能·工业4.0·mcp协议·cad智能化·ai设计自动化
鹿鸣天涯14 分钟前
智能世界2035:探索未知,跃见未来
人工智能
火星技术19 分钟前
【 AI 智能换装开源】
人工智能
zyplayer-doc23 分钟前
目录支持批量操作,文档增加可见范围、锁定功能,PDF查看优化,zyplayer-doc 2.5.8 发布啦!
数据库·人工智能·pdf·编辑器·飞书·石墨文档
Dandelion____z32 分钟前
AI 驱动业务的致命风险:如何用架构设计守住安全底线?
java·大数据·人工智能·spring boot·aigc·jboltai
黑客思维者41 分钟前
为什么大语言模型需要海量训练数据?
人工智能·语言模型·自然语言处理
Mr数据杨1 小时前
【Gradio】Gradio 启动规避 Huggingface 代理问题
python·gradio
s***87271 小时前
【Python】网络爬虫——词云wordcloud详细教程,爬取豆瓣最新评论并生成各式词云
爬虫·python·信息可视化
north_eagle1 小时前
缓解电动汽车里程焦虑:一个简单的AI模型如何预测港口可用性
人工智能