时间序列预测 Graph-WaveNet:Graph WaveNet for Deep Spatial-Temporal Graph Modeling

Graph-WaveNet

    • [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](#Graph WaveNet for Deep Spatial-Temporal Graph Modeling)
    • 1.概述
    • [2.提出问题 & 解决策略 & 模型结构](#2.提出问题 & 解决策略 & 模型结构)
    • 3.实验结果

**

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

**

1.概述

时空图建模是分析系统中各组成部分的空间关系和时间趋势的一项重要任务。现有的方法大多捕获固定图结构上的空间依赖,假设实体之间的底层关系是预先确定的。然而,明确的图结构(关系)并不一定反映真实的依赖关系,由于数据中的连接不完整,可能会丢失真实的关系。此外,现有的方法无法捕获时间趋势,因为这些方法中使用的rnn或cnn无法捕获长时间序列。

为了克服这些限制,我们在本文中提出了一种基于CNN的新的图神经网络架构Graph-WaveNet,用于时空图建模。通过建立一种新的自适应邻接矩阵并通过node embedding学习该矩阵 ,该模型可以准确地捕获数据中隐藏的空间依赖。通过a stacked dilated casual 1D convolution component 实现感受野随层数指数级增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝地集成在一个统一的框架中,整个框架以端到端的方式学习。

在metro - la和PEMS-BAY两个公共交通网络数据集上的实验结果证明了该算法的优越性能。

2.提出问题 & 解决策略 & 模型结构

3.实验结果


相关推荐
IT_陈寒1 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
数据智能老司机2 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
逛逛GitHub2 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心3 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
数据智能老司机3 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机3 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机3 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
CoovallyAIHub3 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
c8i4 小时前
drf初步梳理
python·django
每日AI新事件4 小时前
python的异步函数
python