时间序列预测 Graph-WaveNet:Graph WaveNet for Deep Spatial-Temporal Graph Modeling

Graph-WaveNet

    • [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](#Graph WaveNet for Deep Spatial-Temporal Graph Modeling)
    • 1.概述
    • [2.提出问题 & 解决策略 & 模型结构](#2.提出问题 & 解决策略 & 模型结构)
    • 3.实验结果

**

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

**

1.概述

时空图建模是分析系统中各组成部分的空间关系和时间趋势的一项重要任务。现有的方法大多捕获固定图结构上的空间依赖,假设实体之间的底层关系是预先确定的。然而,明确的图结构(关系)并不一定反映真实的依赖关系,由于数据中的连接不完整,可能会丢失真实的关系。此外,现有的方法无法捕获时间趋势,因为这些方法中使用的rnn或cnn无法捕获长时间序列。

为了克服这些限制,我们在本文中提出了一种基于CNN的新的图神经网络架构Graph-WaveNet,用于时空图建模。通过建立一种新的自适应邻接矩阵并通过node embedding学习该矩阵 ,该模型可以准确地捕获数据中隐藏的空间依赖。通过a stacked dilated casual 1D convolution component 实现感受野随层数指数级增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝地集成在一个统一的框架中,整个框架以端到端的方式学习。

在metro - la和PEMS-BAY两个公共交通网络数据集上的实验结果证明了该算法的优越性能。

2.提出问题 & 解决策略 & 模型结构

3.实验结果


相关推荐
旦莫1 分钟前
Python测试开发工具库:日志脱敏工具(敏感信息自动屏蔽)
python·测试开发·自动化·ai测试
唐叔在学习6 分钟前
Python自动化指令进阶:UAC提权
后端·python
旺仔小拳头..6 分钟前
Java ---变量、常量、类型转换、默认值、重载、标识符、输入输出、访问修饰符、泛型、迭代器
java·开发语言·python
合力亿捷-小亿14 分钟前
沉浸式体验店咨询转化难?在智能客服机器人如何把“体验预约→到店→复购”串成一条链路
人工智能·机器人
狼爷16 分钟前
为什么大小公司都在all in AI Agent?这不是炒作,是AI时代的必然突围
人工智能·aigc
qwerasda12385226 分钟前
基于RetinaNet的校园建筑物识别与分类系统研究_1
人工智能·分类·数据挖掘
wujj_whut37 分钟前
【Conda实战】从0到1:虚拟环境创建、多Python版本管理与环境切换全指南
开发语言·python·conda
lfPCB38 分钟前
数据决策替代人工判断:AI 重构 PCB 质检标准适配高端电子场景
人工智能·重构
财经三剑客39 分钟前
比亚迪2025年销量超460万辆 同比增长7.73%
人工智能·物联网·汽车
geoqiye42 分钟前
2026官方认证:贵阳宠物行业短视频运营TOP5评测
大数据·python·宠物