【论文笔记】Unifying Large Language Models and Knowledge Graphs:A Roadmap

(后续更新完善)

2. KG-ENHANCED LLMS

2.1 KG-enhanced LLM Pre-training

以往将KGs集成到大型语言模型的工作主要分为三个部分:1)将KGs集成到训练目标中,2)将KGs集成到LLM输入中,3)将KGs集成到附加的融合模块中。

2.1.1 Integrating KGs into Training Objective

这一类的研究工作集中在设计新的知识感知训练目标,一个直观的想法是在预训练目标中暴露出更多的知识实体。

例如:

GLM利用知识图谱结构来分配一个掩盖概率。具体来说,可以在一定数量的跳数内到达的实体被认为是最重要的学习实体,在预训练期间,它们被赋予更高的屏蔽概率。

E-BERT进一步控制标记级和实体级训练损失之间的平衡。训练损失值被用作标记和实体的学习过程的指示,它动态地确定它们在下一个训练周期的比例。

SKEP采用了类似的融合方法,在LLMs预训练期间注入情感知识。SKEP首先通过利用PMI和一组预定义的种子情感词来确定具有积极和消极情感的词。然后,它在词语掩蔽目标中为这些确定的情感词语分配一个较高的掩蔽概率。

另一项工作是明确利用与知识和输入文本的联系。

如图9所示,ERNIE提出了一个新的词-实体对齐训练目标作为预训练目标。

具体来说,ERNIE将文本中提到的句子和相应的实体都输入到LLM中,然后训练LLM来预先决定文本标记和知识图谱中实体之间的对齐链接。

KALM通过纳入实体嵌入来增强输入的标记,除了纯标记的预训练目标外,还包括一个实体预测预训练任务。这种方法旨在提高LLM捕获与实体有关的知识的能力。

KEPLER直接将知识图谱嵌入训练目标和Masked token预训练目标纳入一个基于共享变压器的编码器。

确定性的LLM专注于预训练语言模型以捕获确定性的事实知识。它只对有确定性实体作为问题的跨度进行遮蔽,并引入了额外的线索对比学习和线索分类目标。

WKLM首先用其他同类型的实体替换文本中的实体,然后将其送入LLMs。该模型被进一步预训练以区分实体是否被替换。

相关推荐
java1234_小锋7 小时前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
python·自然语言处理·flask
s1ckrain9 小时前
【论文阅读】ON THE ROLE OF ATTENTION HEADS IN LARGE LANGUAGE MODEL SAFETY
论文阅读·人工智能·语言模型·大模型安全
UQI-LIUWJ14 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
java1234_小锋17 小时前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 热词数量分析日期统计功能实现
python·自然语言处理·flask
茫茫人海一粒沙18 小时前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华18 小时前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
音元系统21 小时前
五度标调法调域统计分析工具
语言模型·自然语言处理·语音识别·输入法·语音分类
EulerBlind1 天前
【运维】SGLang 安装指南
运维·人工智能·语言模型
想变成树袋熊1 天前
【自用】NLP算法面经(6)
人工智能·算法·自然语言处理
我不是大佬zvj1 天前
解决使用vscode连接服务器出现“正在下载 VS Code 服务器...”
语言模型