self.register_buffer方法使用解析(pytorch)

self.register_buffer就是pytorch框架用来保存不更新参数的方法。

列子如下:

c 复制代码
self.register_buffer("position_emb", torch.randn((5, 3)))

第一个参数position_emb传入一个字符串,表示这组参数的名字,第二个就是tensor形式的参数torch.randn((5, 3),并一次初始化后保存于模型,不会有梯度传播给它,能被模型的model.state_dict()记录下来,可以理解为模型的常数。当然,你想保留固定值,使用如下代码:

c 复制代码
self.register_buffer("position_emb", torch.tensorrt([[2,5],[8,9]]))

进一步探讨训练对该参数是否有影响,答案是:没影响。具体可看下面实现的列子代码:

c 复制代码
import torch
from torch.nn import Embedding

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.emb = Embedding(5, 3)
        self.register_buffer("position_emb", torch.randn((5, 3)))
    def forward(self,vec):
        input = torch.tensor([0, 1, 2, 3, 4])
        emb_vec1 = self.emb(input)
        emb_vec1=emb_vec1+self.position_emb
        output = torch.einsum('ik, kj -> ij', emb_vec1, vec)
        return output
def simple_train():
    model = Model()
    vec = torch.randn((3, 1))
    label = torch.Tensor(5, 1).fill_(3)
    loss_fun = torch.nn.MSELoss()
    opt = torch.optim.SGD(model.parameters(), lr=0.015)
    print('初始化后position_emb参数:\n',model.position_emb)
    for iter_num in range(100):
        output = model(vec)
        loss = loss_fun(output, label)
        opt.zero_grad()
        loss.backward(retain_graph=True)
        opt.step()
    print('训练后position_emb参数:\n', model.position_emb)

if __name__ == '__main__':
   simple_train()  # 训练与保存权重

实现结果如下:

相关推荐
二二孚日13 分钟前
自用华为ICT云赛道AI第三章知识点-昇腾芯片硬件架构,昇腾芯片软件架构
人工智能·华为
June bug40 分钟前
【Python基础】变量、运算与内存管理全解析
开发语言·python·职场和发展·测试
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(几何变换--图像平移、图像旋转、放射变换、图像缩放、透视变换)
开发语言·人工智能·python·opencv·计算机视觉
蹦蹦跳跳真可爱5891 小时前
Python----循环神经网络(Transformer ----Layer-Normalization(层归一化))
人工智能·python·rnn·transformer
m0_625686551 小时前
Day58
python
夜阳朔1 小时前
Conda环境激活失效问题
人工智能·后端·python
小Lu的开源日常1 小时前
AI模型太多太乱?用 OpenRouter,一个接口全搞定!
人工智能·llm·api
m0_723140232 小时前
Python训练营-Day49
开发语言·python
北风toto2 小时前
python学习DataFrame数据结构
数据结构·python·学习
亿牛云爬虫专家2 小时前
微服务化采集平台:可扩展性与容错机制
python·微服务·架构·爬虫代理·扩展性·新浪财经·财经新闻