目录
前言
本项目基于从网络获取的多种银行卡数据集,采用OpenCV库的函数进行图像处理,并通过神经网络进行模型训练。最终实现对常规银行卡号的智能识别和输出。
首先,通过网络获取了多样化的银行卡数据集,其中包含各种类型和设计的银行卡图像。这些图像数据将作为训练集和测试集,用于训练智能识别模型。
其次,利用OpenCV库的功能,项目对银行卡图像进行处理。包括图像增强、边缘检测、文本定位等技术,以优化图像并提高卡号的提取准确性。
接下来,通过神经网络进行模型训练。神经网络采用深度学习框架TensorFlow,通过学习大量银行卡图像,使模型能够理解和准确识别不同银行卡号的模式和特征。
最终,训练完成的神经网络模型能够智能地识别并输出常规银行卡号。这使得在图像中提取卡号的过程更为自动化和高效。
总体而言,本项目集成了数据采集、图像处理和深度学习技术,为银行卡号的智能识别提供了一种先进的解决方案。这对于自动化银行卡信息提取的场景,如金融服务或身份验证系统,具有潜在的实际应用价值。
总体设计
本部分包括系统整体结构图和系统流程图。
系统整体结构图
系统整体结构如图所示。
系统流程图
系统流程如图所示。
运行环境
本部分包括Python环境、TensorFlow环境和OpenCV环境。
详见博客。
模块实现
本项目包括4个模块:训练集图片处理、测试图片处理、模型训练及保存、模型测试。下面分别介绍各模块的功能及相关代码。
1. 训练集图片处理
数据集下载网址为http://www.cnsoftbei.com/plus/view.php?aid=348。训练集为1000张人工处理银行卡号截图中选取的120张大小不一、由4个银行卡字符单位组成的图片。这些数据集已打包存放在名为images的文件夹中,如图所示。
1)数据加载
相关代码如下:
python
def img_handle():
for root, dirs, files in os.walk('./images'):
for file in files:
img_path = root+'/'+file
img = cv2.imread(img_path, 0)
get_img(img, file)
return data, label
2)图像处理
将图片以灰度图像读入,对其进行高斯模糊、二值化处理。绘制垂直投影直方图,从左到右逐列扫描,本列有多少黑色像素点,对应直方图列就有多高。将直方图按列从左到右扫描,凡遇到直方图高度"由无到有"或者"由有到无"的列做一个标记,根据这些标记对字符分割,单个字符归一化为16×16。分割字符之后,由于数据量较少,通过对训练集做平移、添加噪声处理,进行增强。相关代码如下:
python
def get_img(img, file):
blur = cv2.GaussianBlur(img, (3, 3), 0) #高斯模糊
ret, img = cv2.threshold(blur, 60, 255, cv2.THRESH_BINARY) #二值化
height, width = img.shape
v = [0] * width
z = [0] * height
a = 0
#垂直投影:统计并存储每一列的黑点数
for x in range(0, width):
for y in range(0, height):
if img[y, x] == 255:
continue
else:
a = a + 1
v[x] = a
a = 0
#创建空白图片,绘制垂直投影图
l = len(v)
emptyImage = np.full((height, width), 255, dtype=np.uint8)
for x in range(0, width):
for y in range(0, v[x]):
emptyImage[y, x] = 0
#分割字符
Position = []
Wstart = 0
Wend = 0
W_Start = 0
W_End = 0
v[0], v[len(v) - 1] = 0, 0
for j in range(len(v)):
if v[j] > 0 and Wstart == 0:
W_Start = j
Wstart = 1
Wend = 0
if v[j] <= 0 and Wstart == 1:
W_End = j
Wstart = 0
Wend = 1
if Wend == 1:
Position.append([W_Start, 0, W_End, height])
Wend = 0
i = 0
for m in range(len(Position)):
if Position[m][3]/(Position[m][2]-Position[m][0]) > 1 and Position[m][3]/(Position[m][2]-Position[m][0]) < 5:
temp_img = img[Position[m][1]:Position[m][3], Position[m][0]:Position[m][2]]
temp_img = cv2.resize(temp_img, (16, 16)) #大小归一化
#数据增强
blur1 = cv2.GaussianBlur(temp_img, (1, 1), 0) #高斯模糊
blur2 = cv2.GaussianBlur(temp_img, (3, 3), 0) #高斯模糊
noise = sp_noise(temp_img, 0.01) #噪声
h0, w0 = temp_img.shape
temp_label = [0.0] * 10
temp_data = []
for hx in range(h0):
for wx in range(w0):
temp_data.append(float(temp_img[hx, wx]))
data.append(temp_data)
temp_data = []
for hx in range(h0):
for wx in range(w0):
temp_data.append(float(blur1[hx, wx]))
data.append(temp_data)
temp_data = []
for hx in range(h0):
for wx in range(w0):
temp_data.append(float(blur2[hx, wx]))
data.append(temp_data)
temp_data = []
for hx in range(h0):
for wx in range(w0):
temp_data.append(float(noise[hx, wx]))
data.append(temp_data)
temp_data = [] #左移
for hx in range(h0):
for wx in range(w0):
if wx < w0-1:
temp_data.append(float(temp_img[hx, wx+1]))
else:
temp_data.append(255.0)
data.append(temp_data)
temp_data = [] #右移
for hx in range(h0):
for wx in range(w0):
if wx > 0:
temp_data.append(float(temp_img[hx, wx - 1]))
else:
temp_data.append(255.0)
data.append(temp_data)
temp_data = [] #上移
for hx in range(h0):
if hx < h0-1:
for wx in range(w0):
temp_data.append(float(temp_img[hx+1, wx]))
else:
for wx in range(w0):
temp_data.append(255.0)
data.append(temp_data)
temp_data = [] #下移
for hx in range(h0):
if hx > 0:
for wx in range(w0):
temp_data.append(float(temp_img[hx-1, wx]))
else:
for wx in range(w0):
temp_data.append(255.0)
data.append(temp_data)
temp_label[int(file[i])] = 1.0
for j in range(8):
label.append(temp_label)
i += 1
#添加噪声
def sp_noise(image,prob):
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = image[i][j]
return output
2. 测试图片处理
1)图像读取
拍摄的测试图片已打包放入test_images文件夹,加载代码如下:
python
def image_process(file_path):
file_path = 'test_images/x.jpg'
#其中x.jpg为test_images文件夹中的任意图片
2)图像处理
与训练集预处理相似,直接将图片以灰度图像读入,对其进行高斯模糊、二值化、膨胀腐蚀处理和字符分割。由于银行卡图像上不仅有卡号,还有其他图形或字符,因此,需要对卡号进行定位。此外,这里不需要再进行数据增强处理。相关代码如下:
python
#图像处理
def image_process(file_path):
img = cv2.imread(file_path, 0)
blur = cv2.GaussianBlur(img, (3, 3), 0) #高斯模糊
ret, binary = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY) #二值化
kernel = np.ones((1, 50), np.uint8)
erosion = cv2.erode(binary, kernel) #膨胀
dilation = cv2.dilate(erosion, kernel) #腐蚀
#通过边缘检测得到多条色块,再根据银行卡号分布的特征设定阈值,判定银行卡号的区域
contours, hierarchy = cv2.findContours(dilation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
sp = dilation.shape
x, y, w, h = 0, 0, 0, 0
for i in range(0, len(contours)):
#矩形边框,返回值x、y是矩阵左上点的坐标,w、h是矩阵的宽和高
x, y, w, h = cv2.boundingRect(contours[i])
#计算矩形是否圈住银行卡号
if h > sp[0]*0.05 and w > sp[1]*0.5 and y > sp[0]*0.2 and y < sp[0]*0.8 and w/h > 5:
img = binary[y:y + h, x:x + w]
break
return num_split(img)
#得到卡号区域后,绘制垂直投影直方图,字符分割,再将单个字符归一化为16*16大小的图像
#图像分割
def num_split(img):
height, width = img.shape
v = [0] * width
z = [0] * height
a = 0
#垂直投影:统计并存储每一列的黑点数
#逐行存储
for x in range(0, width):
for y in range(0, height):
if img[y, x] == 255:
continue
else:
a = a + 1
v[x] = a
a = 0
#创建空白图片,绘制垂直投影图
l = len(v)
emptyImage = np.full((height, width), 255, dtype=np.uint8)
for x in range(0, width):
for y in range(0, v[x]):
emptyImage[y, x] = 0
#分割字符
#将字符坐标及宽度存放到Position
Position = []
Wstart = 0
Wend = 0
W_Start = 0
W_End = 0
v[0], v[len(v)-1] = 0, 0
for j in range(len(v)):
if v[j] > 0 and Wstart == 0:
W_Start = j
Wstart = 1
Wend = 0
if v[j] <= 0 and Wstart == 1:
W_End = j
Wstart = 0
Wend = 1
if Wend == 1:
Position.append([W_Start, 0, W_End, height])
Wend = 0
data = []
#对单个字符处理
for m in range(len(Position)):
temp_img = img[Position[m][1]:Position[m][3], Position[m][0]:Position[m][2]]
#获得单个字符的宽度和高度
h1, w1 = temp_img.shape
if w1 > h1:
return []
temp_img = cv2.resize(temp_img, (16, 16))
h0, w0 = temp_img.shape
temp_data = []
for hx in range(h0):
for wx in range(w0):
temp_data.append(float(temp_img[hx, wx]))
data.append(temp_data)
return data
相关其它博客
基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统------深度学习算法应用(含python、模型源码)+数据集(一)
基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统------深度学习算法应用(含python、模型源码)+数据集(三)
工程源代码下载
其它资料下载
如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习------基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。