MATLAB - 凸优化(Convex Optimization)

系列文章目录


前言

凸优化(Convex optimization)是在凸约束(convex constraints)条件下使凸目标函数(convex objective function)最小化的过程,或者等同于在凸约束条件下使凹目标函数最大化的过程。对于许多凸优化问题,满足局部最优(local optimality)条件的点都能被有效地找到。由于局部最优点也是全局最优(global optimum)点,因此只需找到局部最优点即可解决问题。非凸问题的凸近似提供了最优目标值(optimal objective value)和近似解(approximate solutions)的边界。

下图展示了凸优化和非凸优化问题的示例。

凸优化的应用遍及金融和工程领域,包括投资组合优化(portfolio optimization)、设计优化(design optimization)、参数估计(parameter estimation)、信号处理(signal processing)和最优控制(optimal control)。例如,选择一个股票投资组合,使其收益最大化,但风险和跟踪误差不得超过基准投资组合的上限,这个问题可以表述为一个凸优化问题。

凸优化是一个数学问题,即找到一个向量 x 的数学问题:

满足条件

(nonlinear inequality constraints - 非线性不等式约束)

(linear inequality constraints - 线性不等式约束)

(linear equality constraints - 线性等式约束)

(bound constraints - 范围约束条件)

其中, 都是凸函数。

线性规划(Linear programs,LP)和凸二次规划(convex quadratic programs,QP)是凸优化问题(convex optimization problems)。不等式约束为凸锥的圆锥优化(Conic optimization)问题也属于凸优化问题。具有线性或凸二次方目标以及线性和凸二次方约束的问题(convex quadratic constraints,QCQP)可以表示为二阶锥形规划(second-order cone programs,SOCP),从而可以用高效的凸优化方法求解。

内点法(Interior point algorithms)通常用于解决凸优化问题,可使用矩阵运算和 Cholesky 因式分解(Cholesky factorization)或块 LDL' 因式分解(block LDL' factorization)在 MATLAB® 中编写。Optimization Toolbox™(Optimization Toolbox™) 拥有线性规划(linear programs)、二次规划(quadratic programs)、非线性规划(nonlinear programs)和二阶锥形规划(second-order cone programs)的内点法实现,适用于大规模问题。

有关解决凸优化问题的更多信息,请参阅优化工具箱(Optimization Toolbox)。


一、线性规划(Linear Programming)

线性规划(Linear programming),又称线性优化(linear optimization),是指在约束条件(bounds)、线性等式(linear equality)和线性不等式约束下,使线性目标函数(linear objective function)最小化或最大化。实例问题包括加工业中的混合(blending)、制造业中的生产规划(production planning)、金融业中的现金流匹配(cash flow matching)以及能源和运输业(energy and transportation)中的规划。

线性规划是一个数学问题,即找到一个向量 x 的数学问题:

满足约束

1.1 用 MATLAB 进行线性规划

您可以使用 MATLAB® 实现以下常用算法来解决线性规划问题:

  • 内部点(Interior point): 使用初等 - 二元预测 - 校正(primal-dual predictor-corrector)算法,尤其适用于具有结构或可使用稀疏矩阵定义的大规模线性规划。
  • 单纯形(Simplex):使用系统程序生成和测试线性程序的候选顶点解。单纯形算法和相关的对偶-单纯形算法是线性优化中使用最广泛的算法。

优化工具箱™中的 linprog(linprog) 求解器实现了这些线性优化技术。

二、二次规划 - Quadratic Programming

二次规划(QP)是指在边界、线性相等和不相等约束条件下,使目标函数最小化或最大化。这类问题的例子包括金融领域的投资组合优化(portfolio optimization)、电力公司的发电优化和工程领域的设计优化(design optimization)。

二次规划是一个数学问题,即找到一个能使二次函数最小化的向量 x:

满足条件:

您可以使用 MATLAB® 实现以下常用算法来解决二次编程问题:

有关二次规划的更多信息,请参阅优化工具箱™。

相关推荐
嘴贱欠吻!12 小时前
Flutter鸿蒙开发指南(七):轮播图搜索框和导航栏
算法·flutter·图搜索算法
Elastic 中国社区官方博客13 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
张祥64228890413 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
qq_1927798713 小时前
C++模块化编程指南
开发语言·c++·算法
赛博鲁迅14 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
cici1587415 小时前
大规模MIMO系统中Alamouti预编码的QPSK复用性能MATLAB仿真
算法·matlab·预编码算法
历程里程碑15 小时前
滑动窗口---- 无重复字符的最长子串
java·数据结构·c++·python·算法·leetcode·django
春日见16 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
hjs_deeplearning16 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
2501_9403152616 小时前
航电oj:首字母变大写
开发语言·c++·算法