【目标检测实验系列】YOLOv5创新点改进实验:通过转置卷积,动态学习参数,减少上采用过程特征丢失,提高模型对目标的检测精度!(超详细改进代码流程)

1. 文章主要内容

本篇博客主要涉及两个主体内容。第一个 :简单介绍转置卷积 的原理。第二个 :基于YOLOv5 6.x 版本,将Neck部分的upSample改为nn.ConvTranspose2d 转置卷积(通读本篇博客需要10分钟左右的时间 )。

小提示:这些点子都可以用来作为写SCI四区、北大核心论文的一个小创新点!

2. 转置卷积(原理:简单介绍,可自行详细研究)

通俗的讲,转置卷积相对于普通卷积在上采样过程中,能够动态的学习需要补充的参数,这样就可以减少在上采样过程中特征的丢失,尤其是一些小的目标(这是因为,小目标的信息本来是比较少的) 。具体的原理可以参考这篇博客:转置卷积

3. 实验流程

3.1 新建yolov5s-transposed2d.yaml文件

需要注意到,我们通过nn.ConvTranspose2d来代表转置卷积。另外:

python 复制代码
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.ConvTranspose2d, [256, 4, 2, 1, 0, 256]],

nn.ConvTranspose2d输入输出通道来自于上一层的普通卷积的输出通道,这就意味着,如果想要自定义的添加Neck的位置,需要注意到上层卷积的输出通道数要和转置卷积匹配。博主这里使用nn.ConvTranspose2d替换前两层的upSample。

本实验以yolov5s作为基础模型,其他的YOLOv5模型类似。需要注意到,新建的文件一般存放于models 文件夹下,另外需要修改文件中的nc(即为类别数目,根据自己的数据集来),其代码如下所示:

python 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8  小目标
  - [30,61, 62,45, 59,119]  # P4/16 中目标
  - [116,90, 156,198, 373,326]  # P5/32  大目标

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2  output_channel, kernel_size, stride, padding
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.ConvTranspose2d, [512, 4, 2, 1, 0, 512]],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.ConvTranspose2d, [256, 4, 2, 1, 0, 256]],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

3.1 在yolo.py文件中引入nn.ConvTranspose2d

添加两个部分的代码到yolo.py文件中如图所示的位置:

3.2 在train.py文件中修改配置文件

在train.py文件中将配置文件修改为yolov5s-transposed2d.yaml,如下图所示:

4. 本篇小结

本篇博客主要介绍了nn.ConvTranspose2d+YOLOv5的修改详细流程,助力模型高效涨点。另外,在修改过程中,要是有任何问题,评论区交流;如果博客对您有帮助,请帮忙点个赞,收藏一下;后续会持续更新本人实验当中觉得有用的点子,如果很感兴趣的话,可以关注一下,谢谢大家啦!

相关推荐
小鸡吃米…30 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能