每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点

在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。所以1*1的卷积核的主要计算发生在通道维上。

使用1*1卷积完成通道压缩

对于一个 28×28×192 的输入层,我们可以使用池化层压缩它的高度和宽度 ,但如果通道数量很大,如何才能压缩通道呢?

该如何把28×28×192压缩为 28×28×32 维度呢?你可以用 32个大小为 1×1×192 的过滤器,也就是说你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(nc)的方法。

我们可以认为1×1 卷积只是添加了非线性函数,所以让网络学习更复杂的函数,我们可以再添加一层使用192个大小为 1×1*192的过滤器,其输入为 28×28×192,输出为 28×28×192。这样输入和输出的维度是一样的,都是28×28×192,但是后面的输出比前面的输入可以认为提取到了更加复杂的特征。

相关推荐
这张生成的图像能检测吗3 分钟前
(论文速读)面向视觉语言模型组合性理解可视分析方法
人工智能·视觉语言模型·可视化理解
qq_3482318542 分钟前
AI 驱动-前端源码生成测试
人工智能
飞Link1 小时前
GDN:深度学习时代的图偏差网络异常检测全解析
网络·人工智能·深度学习
喏喏心1 小时前
深度强化学习:价值迭代与Bellman方程实践
人工智能·python·学习·机器学习
阿杰学AI1 小时前
AI核心知识48——大语言模型之Synthetic Data(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·合成数据·synthetic data·模型崩溃
陈天伟教授1 小时前
人工智能应用-机器视觉:人脸识别(6)深度神经网络方法
人工智能·神经网络·dnn
千匠网络1 小时前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
JERRY. LIU2 小时前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉
l木本I2 小时前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
通义灵码2 小时前
在 IDEA 里用 AI 写完两个 Java 全栈功能,花了 7 分钟
人工智能·ai编程·qoder