每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点

在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。所以1*1的卷积核的主要计算发生在通道维上。

使用1*1卷积完成通道压缩

对于一个 28×28×192 的输入层,我们可以使用池化层压缩它的高度和宽度 ,但如果通道数量很大,如何才能压缩通道呢?

该如何把28×28×192压缩为 28×28×32 维度呢?你可以用 32个大小为 1×1×192 的过滤器,也就是说你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(nc)的方法。

我们可以认为1×1 卷积只是添加了非线性函数,所以让网络学习更复杂的函数,我们可以再添加一层使用192个大小为 1×1*192的过滤器,其输入为 28×28×192,输出为 28×28×192。这样输入和输出的维度是一样的,都是28×28×192,但是后面的输出比前面的输入可以认为提取到了更加复杂的特征。

相关推荐
core5124 小时前
神经网络 (Neural Networks):模仿大脑的超级机器
人工智能·深度学习·神经网络
GitCode官方4 小时前
Qwen-Image-Edit-2509 正式上线 AtomGit AI:重新定义 AI 图像编辑体验!
人工智能·计算机视觉·atomgit
SCBAiotAigc4 小时前
Chrome的cookie编辑插件EditThisCookie
人工智能·chrome·python·ubuntu
啊阿狸不会拉杆4 小时前
《数字图像处理》实验6-图像分割方法
图像处理·人工智能·算法·计算机视觉·数字图像处理
不惑_4 小时前
通俗理解什么是神经网络
人工智能·深度学习·神经网络
愚公搬代码5 小时前
【愚公系列】《扣子开发 AI Agent 智能体应用》014-基于大模型的企业知识库(知识库的理论基础 RAG)
人工智能
Nwiliuyw5 小时前
Isaac Gym的WARNING: Forcing cpu pipeline. GPU pipeline disabled无法启用问题可能是个幌子骗了你
人工智能·经验分享·学习
GAOJ_K5 小时前
旋转花键如何保障精密设备长期运行高精度?
人工智能·科技·自动化·制造
神算大模型APi--天枢6465 小时前
合规落地加速期,大模型后端开发与部署的实战指南
大数据·前端·人工智能·架构·硬件架构
CaiGuoHui15 小时前
利用大型语言模型(LLM)实现Verilog设计中的功能缺陷定位
人工智能·深度学习·语言模型·自然语言处理