每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点

在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。所以1*1的卷积核的主要计算发生在通道维上。

使用1*1卷积完成通道压缩

对于一个 28×28×192 的输入层,我们可以使用池化层压缩它的高度和宽度 ,但如果通道数量很大,如何才能压缩通道呢?

该如何把28×28×192压缩为 28×28×32 维度呢?你可以用 32个大小为 1×1×192 的过滤器,也就是说你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(nc)的方法。

我们可以认为1×1 卷积只是添加了非线性函数,所以让网络学习更复杂的函数,我们可以再添加一层使用192个大小为 1×1*192的过滤器,其输入为 28×28×192,输出为 28×28×192。这样输入和输出的维度是一样的,都是28×28×192,但是后面的输出比前面的输入可以认为提取到了更加复杂的特征。

相关推荐
彼岸花开了吗1 分钟前
构建AI智能体:八十二、潜藏秩序的发现:隐因子视角下的SVD推荐知识提取与机理阐释
人工智能·llm
努力犯错玩AI1 分钟前
如何在ComfyUI中使用Qwen-Image-Layered GGUF:完整安装和使用指南
前端·人工智能
张彦峰ZYF3 分钟前
生成式大模型的风险与治理:从技术隐患到合规落地的系统性分析
人工智能·内容安全·知识产权·模型安全·生成式大模型的风险与治理·个人信息合规治理·生成式人工智能服务管理暂行办法
明明如月学长3 分钟前
非技术人员也能轻松使用 Claude Code?Zed,让 AI 办公像记事本一样丝滑
人工智能
SamtecChina20235 分钟前
Electronica现场演示 | 严苛环境下的56G互连
大数据·网络·人工智能·算法·计算机外设
IT_陈寒8 分钟前
SpringBoot 3.x实战:5个高效开发技巧让我减少了40%重复代码
前端·人工智能·后端
格林威9 分钟前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
Gofarlic_OMS12 分钟前
ANSYS许可证使用合规性报告自动化生成方案
大数据·运维·人工智能·3d·自动化·云计算
Vespeng16 分钟前
我用 Cloudflare 搭建了一个“数字分身”
人工智能·html·产品
全栈技术负责人16 分钟前
AI-DLC 项目代码与流程分析文档【初始项目分析】
人工智能·驱动开发