每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点

在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。所以1*1的卷积核的主要计算发生在通道维上。

使用1*1卷积完成通道压缩

对于一个 28×28×192 的输入层,我们可以使用池化层压缩它的高度和宽度 ,但如果通道数量很大,如何才能压缩通道呢?

该如何把28×28×192压缩为 28×28×32 维度呢?你可以用 32个大小为 1×1×192 的过滤器,也就是说你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(nc)的方法。

我们可以认为1×1 卷积只是添加了非线性函数,所以让网络学习更复杂的函数,我们可以再添加一层使用192个大小为 1×1*192的过滤器,其输入为 28×28×192,输出为 28×28×192。这样输入和输出的维度是一样的,都是28×28×192,但是后面的输出比前面的输入可以认为提取到了更加复杂的特征。

相关推荐
神秘的土鸡7 分钟前
神经网络图像隐写术:用AI隐藏信息的艺术
人工智能·深度学习·神经网络
数据分析能量站8 分钟前
神经网络-LeNet
人工智能·深度学习·神经网络·机器学习
Jaly_W17 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
小嗷犬19 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙26 分钟前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖43 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂1 小时前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者1 小时前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft