每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点

在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。所以1*1的卷积核的主要计算发生在通道维上。

使用1*1卷积完成通道压缩

对于一个 28×28×192 的输入层,我们可以使用池化层压缩它的高度和宽度 ,但如果通道数量很大,如何才能压缩通道呢?

该如何把28×28×192压缩为 28×28×32 维度呢?你可以用 32个大小为 1×1×192 的过滤器,也就是说你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数(nc)的方法。

我们可以认为1×1 卷积只是添加了非线性函数,所以让网络学习更复杂的函数,我们可以再添加一层使用192个大小为 1×1*192的过滤器,其输入为 28×28×192,输出为 28×28×192。这样输入和输出的维度是一样的,都是28×28×192,但是后面的输出比前面的输入可以认为提取到了更加复杂的特征。

相关推荐
波动几何几秒前
信息图风格提示词方案
人工智能
tq10865 分钟前
多智能体协作问题和解决方案
人工智能
gorgeous(๑>؂<๑)8 分钟前
【ICLR26-Oral Paper】透过对比的视角:视觉语言模型中的自改进视觉推理
人工智能·算法·语言模型·自然语言处理
新缸中之脑8 分钟前
AI代理的两种沙盒架构
人工智能·架构
HyperAI超神经10 分钟前
视觉真实之外:清华WorldArena全新评测体系揭示具身世界模型的能力鸿沟
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人
AC赳赳老秦12 分钟前
软件组件自动化的革命:DeepSeek 引领高效开发新时代
运维·人工智能·算法·云原生·maven·devops·deepseek
量子-Alex12 分钟前
【大模型思维链】Tree of Thoughts: Deliberate Problem Solving with Large Language Models
人工智能·语言模型·自然语言处理
Faker66363aaa28 分钟前
如何使用RetinaNet进行中式菜品识别分类训练使用菜谱数据集炒菜,炖汤,蒸鱼,凉拌,烧烤,煎炸
人工智能·分类·数据挖掘
I Promise341 小时前
BEV视角智驾方案全维度发展梳理
人工智能·算法·计算机视觉
woshikejiaih1 小时前
2026年阅读软件Top5避坑攻略:告别卡顿闪退提升沉浸感
人工智能·python