【机器学习】数据降维

非负矩阵分解(NMF)

复制代码
sklearn.decomposition.NMF

找出两个非负矩阵,即包含所有非负元素(W,H)的矩阵,其乘积近似于非负矩阵x。这种因式分解可用于例如降维、源分离或主题提取。

主成分分析(PCA)

复制代码
sklearn.decomposition.PCA

使用数据的奇异值分解将数据投影到较低维度空间的线性降维。在应用奇异值分解之前,输入数据居中,但不对每个特征进行缩放。

快速的独立分量分析算法(FastICA)

复制代码
sklearn.decomposition.FastICA

一种快速的独立分量分析算法。

截断奇异值分解(TruncatedSVD)

复制代码
sklearn.decomposition.TruncatedSVD

使用截断奇异值分解(又名LSA)进行降维。

这种变换器通过截断奇异值分解(SVD)来执行线性降维。与PCA相反,该估计器在计算奇异值分解之前不将数据居中。这意味着它可以有效地处理稀疏矩阵。

参考链接

sklearn.decomposition

相关推荐
小兔崽子去哪了3 小时前
机器学习,梯度下降,拟合,正则化,混淆矩阵
python·机器学习
双翌视觉4 小时前
深入解析远心镜头的工作原理与选型
人工智能·数码相机·机器学习
摆烂咸鱼~5 小时前
机器学习(12)
人工智能·机器学习
liu****5 小时前
机器学习-特征降维
人工智能·python·机器学习·python基础·特征降维
Blossom.1185 小时前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习
木头程序员5 小时前
机器学习模型成员推断攻击与防御:敏感数据保护实战指南
人工智能·机器学习
AI科技星5 小时前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
北辰alk6 小时前
机器学习核心算法全景解析:从原理到实战
机器学习
sunfove6 小时前
上帝的乐谱:从线性代数视角重构傅里叶变换 (FT) 的数学表达式
线性代数·机器学习·重构
万俟淋曦6 小时前
【论文速递】2025年第52周(Dec-21-27)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能