【机器学习】数据降维

非负矩阵分解(NMF)

复制代码
sklearn.decomposition.NMF

找出两个非负矩阵,即包含所有非负元素(W,H)的矩阵,其乘积近似于非负矩阵x。这种因式分解可用于例如降维、源分离或主题提取。

主成分分析(PCA)

复制代码
sklearn.decomposition.PCA

使用数据的奇异值分解将数据投影到较低维度空间的线性降维。在应用奇异值分解之前,输入数据居中,但不对每个特征进行缩放。

快速的独立分量分析算法(FastICA)

复制代码
sklearn.decomposition.FastICA

一种快速的独立分量分析算法。

截断奇异值分解(TruncatedSVD)

复制代码
sklearn.decomposition.TruncatedSVD

使用截断奇异值分解(又名LSA)进行降维。

这种变换器通过截断奇异值分解(SVD)来执行线性降维。与PCA相反,该估计器在计算奇异值分解之前不将数据居中。这意味着它可以有效地处理稀疏矩阵。

参考链接

sklearn.decomposition

相关推荐
喝凉白开都长肉的大胖子33 分钟前
将gym更新到Gymnasium后需要修改哪些位置
人工智能·机器学习·强化学习’
橙露42 分钟前
时间序列分析实战:用 Python 实现股票价格预测与风险评估
人工智能·python·机器学习
啊阿狸不会拉杆1 小时前
第 3 章 灰度变换与空间域滤波
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·数字图像处理
学好statistics和DS1 小时前
感知机的对偶形式是怎么来的
深度学习·神经网络·机器学习
砚边数影3 小时前
AI开发依赖引入:DL4J / Java-ML 框架 Maven 坐标配置
java·数据库·人工智能·深度学习·机器学习·ai·maven
大模型最新论文速读3 小时前
字节跳动 Seed: 用“分子结构”对思维建模
论文阅读·人工智能·深度学习·机器学习·自然语言处理
liliangcsdn4 小时前
基于人类反馈的强化学习框架-RLHF&PPO
人工智能·机器学习
Lips6115 小时前
第四章 决策树
算法·决策树·机器学习
童话名剑6 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
d0ublεU0x007 小时前
预训练模型
人工智能·机器学习