【机器学习】数据降维

非负矩阵分解(NMF)

sklearn.decomposition.NMF

找出两个非负矩阵,即包含所有非负元素(W,H)的矩阵,其乘积近似于非负矩阵x。这种因式分解可用于例如降维、源分离或主题提取。

主成分分析(PCA)

sklearn.decomposition.PCA

使用数据的奇异值分解将数据投影到较低维度空间的线性降维。在应用奇异值分解之前,输入数据居中,但不对每个特征进行缩放。

快速的独立分量分析算法(FastICA)

sklearn.decomposition.FastICA

一种快速的独立分量分析算法。

截断奇异值分解(TruncatedSVD)

sklearn.decomposition.TruncatedSVD

使用截断奇异值分解(又名LSA)进行降维。

这种变换器通过截断奇异值分解(SVD)来执行线性降维。与PCA相反,该估计器在计算奇异值分解之前不将数据居中。这意味着它可以有效地处理稀疏矩阵。

参考链接

sklearn.decomposition

相关推荐
海棠AI实验室2 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
睡觉狂魔er3 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan7243 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活4 小时前
理解支持向量机
算法·机器学习·支持向量机
爱喝热水的呀哈喽4 小时前
《机器学习》支持向量机
人工智能·决策树·机器学习
大山同学4 小时前
第三章线性判别函数(二)
线性代数·算法·机器学习
苏言の狗4 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
bastgia5 小时前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
paixiaoxin7 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net