这一次,我准备了 20节 PyTorch 中文课程

对于刚接触深度学习的小白来说,PyTorch 是必会的框架。 只是,很多小伙伴还没来得及开启学习之路,一个最重要的问题就摆在了面前: PyTorch,该怎么学呢?

很多同学会自己在网上找资料,不仅耗费时间精力,更难以分辨资料的准确与完整,甚至可能连学习的重点都搞错了。

如果你也是个刚入门PyTorch的小白,那就千万不要错过我为你带来的《20天吃掉 PyTorch》,相信我,这也许是你能找到的最全面、系统、适合小白入门的PyTorch课程了!

内容介绍

本书是我利用工作之余大概3个月写成的,大部分读者应该在20天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为 Pytorch 的工具手册在工程落地时作为范例库参考。

日期 学习内容 内容难度 预计学习时间 更新状态 B站讲解
一、Pytorch的建模流程 ⭐️ 0hour
day1 1-1,结构化数据建模流程范例 ⭐️⭐️⭐️ 1hour
day2 1-2,图片数据建模流程范例 ⭐️⭐️⭐️⭐️ 2hour
day3 1-3,文本数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
day4 1-4,时间序列数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
二、Pytorch的核心概念 ⭐️ 0hour
day5 2-1,张量数据结构 ⭐️⭐️⭐️⭐️ 1hour
day6 2-2,自动微分机制 ⭐️⭐️⭐️ 1hour
day7 2-3,动态计算图 ⭐️⭐️⭐️⭐️⭐️ 2hour
三、Pytorch的层次结构 ⭐️ 0hour
day8 3-1,低阶API示范 ⭐️⭐️⭐️⭐️ 1hour
day9 3-2,中阶API示范 ⭐️⭐️⭐️ 1hour
day10 3-3,高阶API示范 ⭐️⭐️⭐️ 1hour
四、Pytorch的低阶API ⭐️ 0hour
day11 4-1,张量的结构操作 ⭐️⭐️⭐️⭐️⭐️ 2hour
day12 4-2,张量的数学运算 ⭐️⭐️⭐️⭐️ 1hour
day13 4-3,nn.functional和nn.Module ⭐️⭐️⭐️⭐️ 1hour
五、Pytorch的中阶API ⭐️ 0hour
day14 5-1,Dataset和DataLoader ⭐️⭐️⭐️⭐️ 1hour
day15 5-2,模型层 ⭐️⭐️⭐️⭐️⭐️ 2hour
day16 5-3,损失函数 ⭐️⭐️⭐️⭐️ 1hour
day17 5-4,TensorBoard可视化 ⭐️⭐️⭐️ 1hour
六、Pytorch的高阶API ⭐️ 0hour
day18 6-1,构建模型的3种方法 ⭐️⭐️ 0.5hour
day19 6-2,训练模型的3种方法 ⭐️⭐️⭐️ 1hour
day20 6-3,使用GPU训练模型 ⭐️⭐️⭐️⭐️ 1hour
* 后记:我的产品观 ⭐️ 0hour

获取方式

好的文章离不开粉丝的分享、推荐,获取前记得点赞、收藏。

按照如下方式获取:

方式①、添加微信号:dkl88194,备注:资料

方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:资料

如果你还想进一步提升技能,这个资料送你

最全面

内容包含Python基础+数学基础+PyTorch框架基础。

最系统

理论+实战+作业,课程设置环环相扣。跟着课程,一步一脚印,小白变高手!

最适合入门

不懂代码?数学不好?一样能入门深度学习!手把手教你洞悉 PyTorch 模型训练过程,彻底掌握 PyTorch 项目实战 !

本书写作风格

本书是一本对人类用户极其友善的 Pytorch入门工具书,Don't let me think是本书的最高追求。

本书主要是在参考Pytorch官方文档和函数doc文档基础上整理写成的。

尽管Pytorch官方文档已经相当简明清晰,但本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和Pytorch自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。

python 复制代码
import torch 
from torch import nn

print("torch version:", torch.__version__)

a = torch.tensor([[2,1]])
b = torch.tensor([[-1,2]])
c = a@b.t()
print("[[2,1]]@[[-1],[2]] =", c.item())
python 复制代码
torch version: 1.10.0
[[2,1]]@[[-1],[2]] = 0
相关推荐
人工智能AI技术8 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡8 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣8 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56788 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6008 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
蒜香拿铁9 小时前
【第三章】python算数运算符
python
檐下翻书1739 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416279 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented9 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie10 小时前
ADALog 日志异常检测
人工智能