昇腾910b部署Chatglm3-6b进行流式输出【pytorch框架】NPU推理

文章目录

准备阶段

避坑阶段

  • 每个人的服务器都不一样,在ChatGLM3/issues中别人只需要修改指定驱动,但是我的不行
  • 删除模型文件包中的model.safetensors.index.json,否则加载模型时会自动加载safetensors文件,而不加载bin文件
bash 复制代码
/home/anaconda3/envs/sakura/lib/python3.9/site-packages/torch_npu/contrib/transfer_to_npu.py:124: RuntimeWarning: torch.jit.script will be disabled by transfer_to_npu, which currently does not support it, if you need to enable torch.jit.script, please do not use transfer_to_npu.
  warnings.warn(msg, RuntimeWarning)
Loading checkpoint shards:   0%|                                                                                                                                     | 0/7 [00:00<?, ?it/s]
Traceback (most recent call last):
  File "/home/HwHiAiUser/work/ChatGLM3/basic_demo/cli_demo.py", line 22, in <module>
    model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).npu().eval()
  File "/home/anaconda3/envs/sakura/lib/python3.9/site-packages/transformers/models/auto/auto_factory.py", line 558, in from_pretrained
    return model_class.from_pretrained(
  File "/home/anaconda3/envs/sakura/lib/python3.9/site-packages/transformers/modeling_utils.py", line 3187, in from_pretrained
    ) = cls._load_pretrained_model(
  File "/home/anaconda3/envs/sakura/lib/python3.9/site-packages/transformers/modeling_utils.py", line 3560, in _load_pretrained_model
    state_dict = load_state_dict(shard_file)
  File "/home/anaconda3/envs/sakura/lib/python3.9/site-packages/transformers/modeling_utils.py", line 467, in load_state_dict
    with safe_open(checkpoint_file, framework="pt") as f:
FileNotFoundError: No such file or directory: "/home/HwHiAiUser/models/chatglm3-6b/model-00001-of-00007.safetensors"
/home/anaconda3/envs/sakura/lib/python3.9/tempfile.py:817: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmp1ygjyx3i'>
  _warnings.warn(warn_message, ResourceWarning)

添加代码

找到ChatGLM3/basic_demo/cli_demo.py

添加以下代码:

python 复制代码
import torch
import torch_npu
import torchvision 
import torchvision_npu
from torch_npu.contrib import transfer_to_npu
import os
import platform
import time
torch_device = "npu:3" # 0~7
torch.npu.set_device(torch.device(torch_device))
torch.npu.set_compile_mode(jit_compile=False)
option = {}
option["NPU_FUZZY_COMPILE_BLACKLIST"] = "Tril"
torch.npu.set_option(option)
print("torch && torch_npu import successfully")

模型加载部分修改为:

python 复制代码
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).npu().eval()

结果展示

相关推荐
蓝婷儿38 分钟前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
Devil枫2 小时前
Kotlin扩展函数与属性
开发语言·python·kotlin
程序员阿超的博客3 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
xingshanchang4 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK5 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
不凡的凡5 小时前
鸿蒙图片相似性对比
华为·harmonyos
Deepoch6 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch6 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines6 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题