2024年新提出的算法:(凤头豪猪优化器)冠豪猪优化算法Crested Porcupine Optimizer(附Matlab代码)

本次介绍一种新的自然启发式元启发式算法------凤头豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI top期刊Knowledge-Based Systems(IF = 8.8)上。

1、简介

受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制:视觉、声音、气味和物理攻击。第一和第二种防御技术(视觉和声音)反映了CPO的探索行为,而第三和第四种防御策略(气味和物理攻击)反映了CPO的剥削行为。所提出的算法提出了一种称为循环种群减少技术的新策略,以模拟并非所有CP都激活其防御机制,而只激活那些受到威胁的介词。该策略促进了收敛速度和种群多样性。

2、数学建模

  1. 种群初始化
    常规的随机初始化种群
  2. 循环种群减少技术(CPR)
    除了加快收敛速度外,还可以保持种群多样性。这种策略模拟了这样一种想法,即并非所有CP都激活防御机制,而是只有那些受到威胁的CP才激活防御机制。因此,在该策略中,在优化过程中从种群中获得一些CP,以加快收敛速度,并将它们重新引入种群中,从而提高多样性,避免陷入局部极小值;该循环基于循环变量T,以确定优化过程中执行数学模型如下:

    其中,T是确定循环数的变量,t是当前函数评估,Tmax是函数评估的最大数量,%表示余数或模运算符,Nmin是新生成的种群中个体的最小数量,因此种群大小不能小于Nmin。
    1)第一防御策略
    当CP意识到捕食者时,它开始举起并扇动羽毛笔,给人一种更深的印象。因此,捕食者有两种选择,要么向它移动,要么远离它。使用正态分布来生成随机值,以数学方式模拟这些选项。如果这些随机值小于1或大于−1,则鼓励向CP靠近。否则,捕食者将远离CP。

    2)第二防御策略
    在这种策略中,CP使用声音方法制造噪音并威胁捕食者。当捕食者靠近豪猪时,豪猪的声音会变得更大。为了从数学上模拟这种行为,提出了以下公式:

    3)第三防御策略
    在这种策略中,CP会分泌恶臭,并在其周围区域传播,以防止捕食者靠近它。为了从数学上模拟这种行为,提出了以下公式:

    4)第四防御策略
    最后一种策略是物理攻击。当捕食者离它很近并用短而厚的羽毛攻击它时,CP会采取物理攻击。在物理攻击过程中,两个物体强烈融合,代表一维的非弹性碰撞。为了用数学公式表达其物理攻击行为,提出了以下公式:

3、完整代码

CPO 跑CEC2005、CEC2014、CEC2017、CEC2020、CEC2022数据集

[1] Mohamed Abdel-Basset, Reda Mohamed, Mohamed Abouhawwash,Crested Porcupine Optimizer: A new nature-inspired metaheuristic, Knowledge-Based Systems, 2023, 111257. https://doi.org/10.1016/j.knosys.2023.111257.

相关推荐
pianmian14 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫6 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20247 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸7 小时前
链表的归并排序
数据结构·算法·链表
jrrz08287 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time7 小时前
golang学习2
算法
南宫生8 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步9 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara9 小时前
函数对象笔记
c++·算法
泉崎10 小时前
11.7比赛总结
数据结构·算法