Python算法题集_搜索二维矩阵II

Python算法题集_搜索二维矩阵II

本文为Python算法题集之一的代码示例

题41:搜索二维矩阵II

1. 示例说明

  • 编写一个高效的算法来搜索 *m* x *n* 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

    • 每行的元素从左到右升序排列。
    • 每列的元素从上到下升序排列。

    示例 1:

    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
    输出:true
    

    示例 2:

    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
    输出:false
    

    提示:

    • m == matrix.length
    • n == matrix[i].length
    • 1 <= n, m <= 300
    • -109 <= matrix[i][j] <= 109
    • 每行的所有元素从左到右升序排列
    • 每列的所有元素从上到下升序排列
    • -109 <= target <= 109

2. 题目解析

- 题意分解

  1. 本题为求排序矩阵中是否存在指定的数值
  2. 本题的主要计算有2处,1是元素遍历,2是比较计算
  3. 基本的解法是双层循环,双层遍历,必然能确认是否存在,所以基本的时间算法复杂度为O(n^2)

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 因矩阵行列均已排序,因此可以在每个数组中判断搜索范围

    2. 既可以判断左边界,也可以判断右边界

    3. 对角线的元素有个特点,左上的元素都小于等于它,右下的元素都大于等于它,可以用它控制检索范围


- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大,因此需要本地化测试解决这个问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题很难超时,超时测试用例本地生成,代码详见【4. 最优算法】

3. 代码展开

1) 标准求解【双层循环】

标准双层循环,意外性能还行,看来大家大部分代码都是这么写的,非常简洁

指标优良,超过84%

python 复制代码
import CheckFuncPerf as cfp

def searchMatrix_base(matrix, target) :
 iheight, iwidth = len(matrix), len(matrix[0])
 for iIdx in range(iheight):
     for jIdx in range(iwidth):
         if matrix[iIdx][jIdx] == target:
             return True
 return False

import random,copy
matrix = []
for iIdx in range(1000):
 matrix.append([random.randint(0, 1000000) for x in range(1000)])
for iIdx in range(100):
 matrix[iIdx].sort()
sortedmatrix = [sorted(column) for column in zip(*matrix)]
iTarget = sortedmatrix[888][879]
matrixCopy = copy.deepcopy(sortedmatrix)
result = cfp.getTimeMemoryStr(searchMatrix_base, matrixCopy, iTarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 searchMatrix_base 的运行时间为 16.96 ms;内存使用量为 4.00 KB 执行结果 = True

2) 改进版一【行尾检测】

行检测最大值是否过小,有少量优化

指标优异,超越91%

python 复制代码
import CheckFuncPerf as cfp

def searchMatrix_ext1(matrix, target):
 iheight, iwidth = len(matrix), len(matrix[0])
 for iIdx in range(iheight):
     if matrix[iIdx][iwidth-1] >= target:
         for jIdx in range(iwidth):
             if matrix[iIdx][jIdx] == target:
                 return True
 return False

import random,copy
matrix = []
for iIdx in range(1000):
 matrix.append([random.randint(0, 1000000) for x in range(1000)])
for iIdx in range(100):
 matrix[iIdx].sort()
sortedmatrix = [sorted(column) for column in zip(*matrix)]
iTarget = sortedmatrix[888][879]
matrixCopy = copy.deepcopy(sortedmatrix)
result = cfp.getTimeMemoryStr(searchMatrix_ext1, matrixCopy, iTarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 searchMatrix_ext1 的运行时间为 16.95 ms;内存使用量为 0.00 KB 执行结果 = True

3) 改进版二【对角线划分】

在对角线判断可能出现区域,计算量最小,但是代码最复杂,调试时间最长,相应维护起来也会更困难;如无绝对必要,不要这么写

表现优异,超过92%

python 复制代码
import CheckFuncPerf as cfp

def searchMatrix_ext2(matrix, target):
 iheight, iwidth = len(matrix), len(matrix[0])
 if matrix[iheight-1][iwidth-1] < target:
     return False
 if matrix[0][0] > target:
     return False
 istart, istop, iminedge = -1, -1, min(iheight, iwidth)
 for iIdx in range(iminedge):
     if matrix[iIdx][iIdx] == target:
         return True
     elif matrix[iIdx][iIdx] < target:
         istart = iIdx
     else:
         istop = iIdx
         break
 if iheight>iwidth:
     for iIdx in range(iwidth, iheight):
         if matrix[iIdx][iwidth-1] >= target:
             for jIdx in range(iwidth):
                 if matrix[iIdx][jIdx] == target:
                     return True
 elif iwidth>iheight:
     for iIdx in range(iheight):
         if matrix[iIdx][iwidth-1] >= target:
             for jIdx in range(iheight, iwidth):
                 if matrix[iIdx][jIdx] == target:
                     return True
 if istop == -1:
     return  False
 for iIdx in range(0, istart+1):
     for jidx in range(istart, iwidth):
         if matrix[iIdx][jidx] == target:
             return True
 for iIdx in range(istart, iheight):
     for jidx in range(0, istop+1):
         if matrix[iIdx][jidx] == target:
             return True
 for iIdx in range(0, iwidth):
     if matrix[istart][iIdx] == target:
         return True
 for iIdx in range(0, iheight):
     if matrix[iIdx][istart] == target:
         return True
 for iIdx in range(0, iwidth):
     if matrix[istop][iIdx] == target:
         return True
 for iIdx in range(0, iheight):
     if matrix[iIdx][istop] == target:
         return True
 return False

import random,copy
matrix = []
for iIdx in range(1000):
 matrix.append([random.randint(0, 1000000) for x in range(1000)])
for iIdx in range(100):
 matrix[iIdx].sort()
sortedmatrix = [sorted(column) for column in zip(*matrix)]
iTarget = sortedmatrix[888][879]
matrixCopy = copy.deepcopy(sortedmatrix)
result = cfp.getTimeMemoryStr(searchMatrix_ext2, matrixCopy, iTarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 searchMatrix_ext2 的运行时间为 3.99 ms;内存使用量为 0.00 KB 执行结果 = True

4. 最优算法

根据本地日志分析,最优算法为第3种searchMatrix_ext2

import random,copy
matrix = []
for iIdx in range(1000):
    matrix.append([random.randint(0, 1000000) for x in range(1000)])
for iIdx in range(100):
    matrix[iIdx].sort()
sortedmatrix = [sorted(column) for column in zip(*matrix)]
iTarget = sortedmatrix[888][879]
matrixCopy = copy.deepcopy(sortedmatrix)

# 6种算法本地速度实测比较
函数 searchMatrix_base 的运行时间为 16.96 ms;内存使用量为 4.00 KB 执行结果 = True
函数 searchMatrix_ext1 的运行时间为 16.95 ms;内存使用量为 0.00 KB 执行结果 = True
函数 searchMatrix_ext2 的运行时间为 3.99 ms;内存使用量为 0.00 KB 执行结果 = True

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

相关推荐
阿俊仔(摸鱼版)几秒前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead2 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
凭君语未可10 分钟前
豆包MarsCode:小C点菜问题
算法
深蓝海拓22 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
C语言魔术师29 分钟前
【小游戏篇】三子棋游戏
前端·算法·游戏
自由自在的小Bird30 分钟前
简单排序算法
数据结构·算法·排序算法
无须logic ᭄30 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis43 分钟前
flask常见问答题
后端·python·flask
Channing Lewis1 小时前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月2 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉