【深度学习笔记】3_10 多层感知机的PyTorch实现

注:本文为《动手学深度学习》开源内容,仅为个人学习记录,无抄袭搬运意图

3.10 多层感知机的简洁实现

下面我们使用PyTorch来实现上一节中的多层感知机。首先导入所需的包或模块。

python 复制代码
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

3.10.1 定义模型

和softmax回归唯一的不同在于,我们多加了一个全连接层作为隐藏层。它的隐藏单元个数为256,并使用ReLU函数作为激活函数。

python 复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

#定义了神经网络的结构    
net = nn.Sequential(
        d2l.FlattenLayer(), #即把多维的输入一维化,常用在从卷积层到全连接层的过渡
        nn.Linear(num_inputs, num_hiddens), #这是一个全连接层(也叫线性层或密集层),它接受 num_inputs 个输入,并输出 num_hiddens 个结果。
        nn.ReLU(),  #这是一个激活函数层,它使用 ReLU(Rectified Linear Unit)函数作为激活函数。ReLU 函数将所有负值置为 0,而正值则保持不变。这有助于网络学习非线性关系。
        nn.Linear(num_hiddens, num_outputs),  #这是另一个全连接层,它接受 num_hiddens 个输入(即上一个隐藏层的输出),并输出 num_outputs 个结果。这个输出层通常不包含激活函数,因为最后的输出将被解释为每个类别的概率(通过 softmax 函数)。
        )

#初始化网络中所有参数的值
for params in net.parameters():
    init.normal_(params, mean=0, std=0.01)

net.parameters() 返回一个包含网络中所有参数(权重和偏置)的迭代器。

init.normal_ 是一个就地(in-place)操作,它会直接修改传入的参数张量(params),而不是创建一个新的张量。

mean=0, std=0.01 指定了正态分布(高斯分布)的均值和标准差,用于生成初始化值。这里使用了较小的标准差(0.01),意味着初始化值将接近于 0,但会有一定的随机性。这种初始化方法有助于网络更快地收敛,但也可能导致训练过程中的一些不稳定性。

3.10.2 读取数据并训练模型

我们使用与3.7节中训练softmax回归几乎相同的步骤来读取数据并训练模型。

注:由于这里使用的是PyTorch的SGD而不是d2lzh_pytorch里面的sgd,所以就不存在3.9节那样学习率看起来很大的问题了。

python 复制代码
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)

num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

输出:

复制代码
epoch 1, loss 0.0030, train acc 0.712, test acc 0.744
epoch 2, loss 0.0019, train acc 0.823, test acc 0.821
epoch 3, loss 0.0017, train acc 0.844, test acc 0.842
epoch 4, loss 0.0015, train acc 0.856, test acc 0.842
epoch 5, loss 0.0014, train acc 0.864, test acc 0.818

小结

  • 通过PyTorch可以更简洁地实现多层感知机。

注:本节除了代码之外与原书基本相同,原书传送门

相关推荐
lpfasd1231 分钟前
两个美国:精英的知识崇拜与底层的反智驯化
笔记
清水迎朝阳2 分钟前
解锁读书新体验--有声小说书屋 本地网站的 标注笔记功能
笔记·电子书·读书·标注·有声小说
汗流浃背了吧,老弟!6 分钟前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
小瑞瑞acd1 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
驭渊的小故事1 小时前
简单模板笔记
数据结构·笔记·算法
芷栀夏1 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
孤狼warrior1 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
Rorsion2 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
机器学习之心2 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
LLWZAI2 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习