C# OpenCvSharp 利用白平衡技术进行图像修复

目录

效果

灰度世界(GrayworldWB)-白平衡算法

完美反射(SimpleWB)-白平衡算法

基于学习的(LearningBasedWB)-白平衡算法

代码

下载


C# OpenCvSharp 利用白平衡技术进行图像修复

OpenCV xphoto模块中提供了三种不同的白平衡算法,分别是:灰度世界(GrayworldWB)算法、完完美反射(SimpleWB)算法和基于学习的(LearningBasedWB)白平衡算法

效果

灰度世界(GrayworldWB)-白平衡算法

参考链接:https://docs.opencv.org/4.x/d7/d71/classcv_1_1xphoto_1_1GrayworldWB.html#details

完美反射(SimpleWB)-白平衡算法

参考链接:https://docs.opencv.org/4.x/d1/d8b/classcv_1_1xphoto_1_1SimpleWB.html#details

基于学习的(LearningBasedWB)-白平衡算法

参考链接:https://docs.opencv.org/4.x/dc/dcb/tutorial_xphoto_training_white_balance.html

代码

using OpenCvSharp;

using OpenCvSharp.XPhoto;

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Security.Cryptography;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace C__OpenCvSharp_利用白平衡技术进行图像修复

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

string image_path = "";

Mat image;

Mat dst = new Mat();

private void button1_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

image_path = ofd.FileName;

pictureBox1.Image = new Bitmap(image_path);

image = new Mat(image_path);

pictureBox2.Image = null;

}

private void Form1_Load(object sender, EventArgs e)

{

image_path = "1.jpg";

pictureBox1.Image = new Bitmap(image_path);

}

/// <summary>

/// 灰度世界(GrayworldWB)-白平衡算法

/// https://docs.opencv.org/4.x/d7/d71/classcv_1_1xphoto_1_1GrayworldWB.html#details

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button2_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

pictureBox2.Image = null;

image = new Mat(image_path);

WhiteBalancer wb = CvXPhoto.CreateGrayworldWB();

wb.BalanceWhite(image, dst);

pictureBox2.Image = new Bitmap(dst.ToMemoryStream());

}

/// <summary>

/// 完美反射(SimpleWB)-白平衡算法

/// https://docs.opencv.org/4.x/d1/d8b/classcv_1_1xphoto_1_1SimpleWB.html#details

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button3_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

pictureBox2.Image = null;

image = new Mat(image_path);

WhiteBalancer wb = CvXPhoto.CreateSimpleWB();

wb.BalanceWhite(image, dst);

pictureBox2.Image = new Bitmap(dst.ToMemoryStream());

}

/// <summary>

/// 基于学习的(LearningBasedWB)-白平衡算法

/// https://docs.opencv.org/4.x/dc/dcb/tutorial_xphoto_training_white_balance.html

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button4_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

pictureBox2.Image = null;

image = new Mat(image_path);

string model = "";//模型路径

WhiteBalancer wb = CvXPhoto.CreateLearningBasedWB(model);

wb.BalanceWhite(image, dst);

pictureBox2.Image = new Bitmap(dst.ToMemoryStream());

}

}

}

复制代码
using OpenCvSharp;
using OpenCvSharp.XPhoto;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace C__OpenCvSharp_利用白平衡技术进行图像修复
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        Mat image;
        Mat dst = new Mat();
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }

        /// <summary>
        /// 灰度世界(GrayworldWB)-白平衡算法
        /// https://docs.opencv.org/4.x/d7/d71/classcv_1_1xphoto_1_1GrayworldWB.html#details
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            pictureBox2.Image = null;

            image = new Mat(image_path);
            WhiteBalancer wb = CvXPhoto.CreateGrayworldWB();
            wb.BalanceWhite(image, dst);
            pictureBox2.Image = new Bitmap(dst.ToMemoryStream());
        }

        /// <summary>
        /// 完美反射(SimpleWB)-白平衡算法
        /// https://docs.opencv.org/4.x/d1/d8b/classcv_1_1xphoto_1_1SimpleWB.html#details
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            pictureBox2.Image = null;

            image = new Mat(image_path);
            WhiteBalancer wb = CvXPhoto.CreateSimpleWB();
            wb.BalanceWhite(image, dst);
            pictureBox2.Image = new Bitmap(dst.ToMemoryStream());
        }

        /// <summary>
        /// 基于学习的(LearningBasedWB)-白平衡算法
        /// https://docs.opencv.org/4.x/dc/dcb/tutorial_xphoto_training_white_balance.html
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            pictureBox2.Image = null;

            image = new Mat(image_path);
            string model = "";//模型路径
            WhiteBalancer wb = CvXPhoto.CreateLearningBasedWB(model);
            wb.BalanceWhite(image, dst);
            pictureBox2.Image = new Bitmap(dst.ToMemoryStream());
        }
    }
}

下载

源码下载

相关推荐
喜欢吃豆1 分钟前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
七元权4 分钟前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
Fuly10245 分钟前
prompt构建技巧
人工智能·prompt
智驱力人工智能7 分钟前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
on_pluto_7 分钟前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习
XXX-X-XXJ10 分钟前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus
艾醒(AiXing-w)17 分钟前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
科兴第一吴彦祖20 分钟前
基于Spring Boot + Vue 3的乡村振兴综合服务平台
java·vue.js·人工智能·spring boot·推荐算法
姚瑞南27 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
antonytyler32 分钟前
认识机器学习
机器学习