线性回归 quickstart

构建一元一次方程

100个(X, y ),大概是'y=3x+4'

python 复制代码
import numpy as np

np.random.seed(42)  # to make this code example reproducible
m = 100  # number of instances
X = 2 * np.random.rand(m, 1)  # column vector
y = 4 + 3 * X + np.random.randn(m, 1)  # column vector

将坐标可视化

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))
plt.scatter(X, y, c='b', label='Data points')
plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.legend()
plt.show()

根据坐标数据,推出函数

矩阵计算,怎么计算的不用管,只需要知道根据坐标就可以计算得出

python 复制代码
from sklearn.preprocessing import add_dummy_feature

X_b = add_dummy_feature(X)  # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y

输出

这里有两个参数,对应y=ax+b中的a,b,现在只需要根据横坐标的起始结束0,2就可以画出线性

也是通过上述的矩阵计算

python 复制代码
X_new = np.array([[0], [2]])
X_new_b = add_dummy_feature(X_new)  # add x0 = 1 to each instance
y_predict = X_new_b @ theta_best
y_predict

输出

也就是,我们得到两个坐标,(0, 4.21509616),(2, 9.75532293),根据这两个点,我们就可以画出一条线

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))

plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")

plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

图中红色的线就是我们根据数据推出来的,也就是通过数据学习到的,然后可以根据红色的线,我们就可以去预测其他的数据了,这就是我们机器学习的过程

简化流程,得到参数ab

直接使用sklearn提供的LinearRegression模型,输入数据就可以得到参数了

python 复制代码
from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_

输出

再跟进起始结束,就可以画出线了

python 复制代码
X_new = np.array([[0], [2]])
lin_reg.predict(X_new)

y_predict = lin_reg.predict(X_new)
y_predict

画图

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))

plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")

plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

到这里,已经完成了入门

相关推荐
好家伙VCC2 分钟前
数学建模模型 全网最全 数学建模常见算法汇总 含代码分析讲解
大数据·嵌入式硬件·算法·数学建模
非门由也8 分钟前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
liulilittle2 小时前
IP校验和算法:从网络协议到SIMD深度优化
网络·c++·网络协议·tcp/ip·算法·ip·通信
小憩-2 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
THMAIL3 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
无风听海3 小时前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
bkspiderx3 小时前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
中华小当家呐4 小时前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸5 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋5 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类