线性回归 quickstart

构建一元一次方程

100个(X, y ),大概是'y=3x+4'

python 复制代码
import numpy as np

np.random.seed(42)  # to make this code example reproducible
m = 100  # number of instances
X = 2 * np.random.rand(m, 1)  # column vector
y = 4 + 3 * X + np.random.randn(m, 1)  # column vector

将坐标可视化

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))
plt.scatter(X, y, c='b', label='Data points')
plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.legend()
plt.show()

根据坐标数据,推出函数

矩阵计算,怎么计算的不用管,只需要知道根据坐标就可以计算得出

python 复制代码
from sklearn.preprocessing import add_dummy_feature

X_b = add_dummy_feature(X)  # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y

输出

这里有两个参数,对应y=ax+b中的a,b,现在只需要根据横坐标的起始结束0,2就可以画出线性

也是通过上述的矩阵计算

python 复制代码
X_new = np.array([[0], [2]])
X_new_b = add_dummy_feature(X_new)  # add x0 = 1 to each instance
y_predict = X_new_b @ theta_best
y_predict

输出

也就是,我们得到两个坐标,(0, 4.21509616),(2, 9.75532293),根据这两个点,我们就可以画出一条线

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))

plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")

plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

图中红色的线就是我们根据数据推出来的,也就是通过数据学习到的,然后可以根据红色的线,我们就可以去预测其他的数据了,这就是我们机器学习的过程

简化流程,得到参数ab

直接使用sklearn提供的LinearRegression模型,输入数据就可以得到参数了

python 复制代码
from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_

输出

再跟进起始结束,就可以画出线了

python 复制代码
X_new = np.array([[0], [2]])
lin_reg.predict(X_new)

y_predict = lin_reg.predict(X_new)
y_predict

画图

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 4))

plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")

plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

到这里,已经完成了入门

相关推荐
算AI4 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之7 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓7 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf7 小时前
图论----拓扑排序
算法·图论
我要昵称干什么7 小时前
基于S函数的simulink仿真
人工智能·算法
向上的车轮7 小时前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ8 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl8 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法