迁移学习怎么用

如果想实现一个计算机视觉应用,而不想从零开始训练权重,比方从随机初始化开始训练,更快的方式是下载已经训练好权重的网络结构,把这个作为预训练,迁移到你感兴趣的新任务上。ImageNet、PASCAL等等数据库已经公开在线。许多计算机视觉的研究者已经在上面训练了自己的算法,训练要耗费很长时间,很多GPU,有人已经经历过这种痛苦,可以下载这种开源的权重,为你自己的神经网络做好的初始化开端,而且可以用迁移学习来迁移知识,从这些大型公共数据库迁移知识到自己的问题上。

举例

比如有两只猫的名字是Tiggar和Misty,下载了框架,前面的可以都不用改,可以修改一下后面的softmax,根据自己的需要替换一下框架中的softmax即可。前面的参数不需要训练了,可以只训练softmax层的权重,同时冻结前面所有层

**如果你的训练集比较小,**用前面固定函数(该神经网络的前半部分)接受任一输入图像X,然后计算其特征向量,然后一句这个特征向量训练一个浅层softmax模型去预测,因此,预计算之前层的激活结果是有利于你计算的操作,(预计算)训练集所有样本(激活结果)并存到硬盘上,然后训练右边的softmax类别。这样做的好处是你不需要在训练集上每次迭代,重新计算这些激活结果。

如果你的训练集比较大,你可以冻结更少的层数,训练后面这些层,尽管输出层的类别与你需要的不同,你可以用最后几层权重作为初始化开始做梯度下降(训练),或者也可以去掉最后几层,用自己的神经元和最终的softmax输出(训练)。即你的数据越多,所冻结的层数可以越少,自己训练的层数可以越多

如果有很多数据, 可以用开源网络和权重初始化整个网络然后训练**。**可以用下载的权重初始化,因为这些权重可以代替随机初始化,然后做梯度下降,训练更新所有的权重和网络层

常见的迁移训练的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后几层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

相关推荐
代码AI弗森15 小时前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
xchenhao16 小时前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
007tg18 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报18 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe9918 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………19 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房20 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck20 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭21 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉