迁移学习怎么用

如果想实现一个计算机视觉应用,而不想从零开始训练权重,比方从随机初始化开始训练,更快的方式是下载已经训练好权重的网络结构,把这个作为预训练,迁移到你感兴趣的新任务上。ImageNet、PASCAL等等数据库已经公开在线。许多计算机视觉的研究者已经在上面训练了自己的算法,训练要耗费很长时间,很多GPU,有人已经经历过这种痛苦,可以下载这种开源的权重,为你自己的神经网络做好的初始化开端,而且可以用迁移学习来迁移知识,从这些大型公共数据库迁移知识到自己的问题上。

举例

比如有两只猫的名字是Tiggar和Misty,下载了框架,前面的可以都不用改,可以修改一下后面的softmax,根据自己的需要替换一下框架中的softmax即可。前面的参数不需要训练了,可以只训练softmax层的权重,同时冻结前面所有层

**如果你的训练集比较小,**用前面固定函数(该神经网络的前半部分)接受任一输入图像X,然后计算其特征向量,然后一句这个特征向量训练一个浅层softmax模型去预测,因此,预计算之前层的激活结果是有利于你计算的操作,(预计算)训练集所有样本(激活结果)并存到硬盘上,然后训练右边的softmax类别。这样做的好处是你不需要在训练集上每次迭代,重新计算这些激活结果。

如果你的训练集比较大,你可以冻结更少的层数,训练后面这些层,尽管输出层的类别与你需要的不同,你可以用最后几层权重作为初始化开始做梯度下降(训练),或者也可以去掉最后几层,用自己的神经元和最终的softmax输出(训练)。即你的数据越多,所冻结的层数可以越少,自己训练的层数可以越多

如果有很多数据, 可以用开源网络和权重初始化整个网络然后训练**。**可以用下载的权重初始化,因为这些权重可以代替随机初始化,然后做梯度下降,训练更新所有的权重和网络层

常见的迁移训练的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后几层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

相关推荐
青瓷程序设计30 分钟前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z1 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方2 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙2 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147422 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
yLDeveloper2 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
阿龙AI日记2 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友2 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案2 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***72843 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源