flink重温笔记(十九): flinkSQL 顶层 API ——FlinkSQL 窗口(解决动态累积数据业务需求)

Flink学习笔记

前言:今天是学习 flink 的第 19 天啦!学习了 flinkSQL 中窗口的应用,包括滚动窗口,滑动窗口,会话窗口,累计窗口,学会了如何计算累计值(类似于中视频计划中的累计播放量业务需求),多维数据分析等大数据热点问题,总结了很多自己的理解和想法,希望和大家多多交流,希望对大家有帮助!
Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!"


文章目录

  • Flink学习笔记
    • [六、FlinkSQL 窗口](#六、FlinkSQL 窗口)
      • [1. 窗口表值函数(tvfs)](#1. 窗口表值函数(tvfs))
      • [2. 窗口分类函数及聚合操作](#2. 窗口分类函数及聚合操作)
        • [2.1 滚动窗口(Tumble Windows)](#2.1 滚动窗口(Tumble Windows))
        • [2.2 滑动窗口(Hop Windows)](#2.2 滑动窗口(Hop Windows))
        • [2.3 会话窗口(Session Windows,暂不支持 Window TVF)](#2.3 会话窗口(Session Windows,暂不支持 Window TVF))
        • [2.4 累计窗口(Comulate Windows flink1.13 版本新特性)](#2.4 累计窗口(Comulate Windows flink1.13 版本新特性))
      • [3. 多维数据分析](#3. 多维数据分析)
        • [3.1 GROUPING SETS](#3.1 GROUPING SETS)
        • [3.2 ROLLUP](#3.2 ROLLUP)
        • [3.3 CUBE](#3.3 CUBE)
        • [3.4 GROUPING 和 GROUPING_ID](#3.4 GROUPING 和 GROUPING_ID)
          • [3.4.1 GROUPING 函数](#3.4.1 GROUPING 函数)
          • [3.4.2 GROUPING_ID(兼容 Hive)](#3.4.2 GROUPING_ID(兼容 Hive))
        • [3.5 Window Top-N](#3.5 Window Top-N)
      • [4. Over Windows](#4. Over Windows)
        • [4.1 ROWS OVER WINDOW](#4.1 ROWS OVER WINDOW)
        • [4.2 RANGE OVER WINDOW](#4.2 RANGE OVER WINDOW)
      • [5. TableAPI 窗口的定义](#5. TableAPI 窗口的定义)
        • [5.1.1 滚动窗口](#5.1.1 滚动窗口)
        • [5.1.2 滑动窗口](#5.1.2 滑动窗口)
        • [5.1.3 会话窗口](#5.1.3 会话窗口)

六、FlinkSQL 窗口

1. 窗口表值函数(tvfs)

将流变成特殊的"批"处理,常用的窗口:

  • 滑动窗口
  • 滚动窗口
  • 会话窗口(flink 1.14 版本支持)
  • 累计窗口(flink 1.13 版本新增)

在 flink 1.13 之前,是一个特殊的 GroupWindowFunction

SQL 复制代码
SELECT
	TUMBLE_START( bidtime, INTERVAL '10' MINUTE),
	TUMBLE_END( bidtime, INTERVAL '10' MINUTE),
	TUMBLE_ROWTIME( bidtime, INTERVAL '10' MINUTE),
	SUM(price)
FROM MyTable
GROUP BY TUMBLE( bidtime, INTERVAL '10' MINUTE),

在 flink 1.13 之后,用 Table-Value Function 进行语法标准化

sql 复制代码
SELECT window_start, window_end, window_time, SUM(price)
FROM TABLE(
	TUMBLE(TABLE MyTable, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES)
)
GROUP BY window_start, window_end;

2. 窗口分类函数及聚合操作

2.1 滚动窗口(Tumble Windows)

语法:

java 复制代码
TUMBLE(TABLE data, DESCRIPTOR(timecol), size)

data:一个表名。
timecol:是一个列描述符,指示应将数据的哪个时间属性列映射到翻转窗口。
size:是指定滚动窗口宽度的持续时间。

数据:

java 复制代码
2021-04-15 08:05:00,4.00,C
2021-04-15 08:07:00,2.00,A
2021-04-15 08:09:00,5.00,D
2021-04-15 08:11:00,3.00,B
2021-04-15 08:13:00,1.00,E
2021-04-15 08:17:00,6.00,F

需求:现在有一个实时数据看板,需要计算当前每10分钟GMV的总和

java 复制代码
package cn.itcast.day02.Window;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

/**
 * @author lql
 * @time 2024-03-16 17:33:47
 * @description TODO
 */
public class GroupWindowsSqlTumbleExample {
    public static void main(String[] args) throws Exception {
        //todo 1)构建flink流处理的运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //todo 2)设置并行度
        env.setParallelism(1);

        //todo 3)构建flink的表的运行环境
        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, settings);

        String filePath = GroupWindowsSqlTumbleExample.class.getClassLoader().getResource("bid.csv").getPath();
        tabEnv.executeSql("create table Bid(" +
                "bidtime TIMESTAMP(3)," +
                "price DECIMAL(10, 2), " +
                "item string," +
                "watermark for bidtime as bidtime - interval '1' second) " +
                "with("
                + "'connector' = 'filesystem',"
                + "'path' = 'file:///"+filePath+"',"
                + "'format' = 'csv'"
                + ")");

        Table table = tabEnv.sqlQuery("" +
                "select window_start,window_end,sum(price) as sum_price " +
                " from table(" +
                "  tumble(table Bid, DESCRIPTOR(bidtime), interval '10' MINUTES))" +
                "  group by window_start,window_end");

        tabEnv.toAppendStream(table, Row.class).print();
        env.execute();
    }
}

结果:

java 复制代码
+I[2021-04-15T08:00, 2021-04-15T08:10, 11.00]
+I[2021-04-15T08:10, 2021-04-15T08:20, 10.00]

2.2 滑动窗口(Hop Windows)

语法:

java 复制代码
HOP(TABLE data, DESCRIPTOR(timecol), slide, size [, offset ])

data:是一个表名。
timecol:是一个列描述符,指示应将数据的哪个时间属性列映射到滑动窗口。
slide:是一个持续时间,指定了连续跳跃窗口开始之间的持续时间
size:是指定跳变窗口宽度的持续时间

需求:每隔 5 分钟,统计 10 分钟的数据

JAVA 复制代码
package cn.itcast.day02.Window;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

/**
 * @author lql
 * @time 2024-03-16 19:28:30
 * @description TODO
 */
public class GroupWindowsSqlHopExample {
    public static void main(String[] args) throws Exception {
        //todo 1)构建flink流处理的运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //todo 2)设置并行度
        env.setParallelism(1);

        //todo 3)构建flink的表的运行环境
        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, settings);

        String filePath = GroupWindowsSqlHopExample.class.getClassLoader().getResource("bid.csv").getPath();
        tabEnv.executeSql("create table Bid(" +
                "bidtime TIMESTAMP(3)," +
                "price DECIMAL(10, 2), " +
                "item string," +
                "watermark for bidtime as bidtime - interval '1' second) " +
                "with("
                + "'connector' = 'filesystem',"
                + "'path' = 'file:///"+filePath+"',"
                + "'format' = 'csv'"
                + ")");

        Table table = tabEnv.sqlQuery("" +
                "select window_start,window_end,sum(price) as sum_price " +
                " from table(" +
                "  hop(table Bid, DESCRIPTOR(bidtime), interval '5' MINUTES, interval '10' MINUTES))" +
                "  group by window_start,window_end");

        tabEnv.toAppendStream(table, Row.class).print();
        env.execute();

    }
}

结果:

java 复制代码
+I[2021-04-15T08:00, 2021-04-15T08:10, 11.00]
+I[2021-04-15T08:05, 2021-04-15T08:15, 15.00]
+I[2021-04-15T08:10, 2021-04-15T08:20, 10.00]
+I[2021-04-15T08:15, 2021-04-15T08:25, 6.00]

2.3 会话窗口(Session Windows,暂不支持 Window TVF)

Flink1.13 版本中不支持 Window TVF,预计在 flink1.14 版本中支持;

需求:用老版本实现,定义 Session Gap 为3分钟,一个窗口最后一条数据之后的三分钟内没有新数据出现,则该窗口关闭,再之后的数据被归为下一个窗口

java 复制代码
package cn.itcast.day02.Window;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

/**
 * @author lql
 * @time 2024-03-16 19:37:20
 * @description TODO
 */
public class GroupWindowsSqlSessionExample {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

        String filePath = GroupWindowsSqlSessionExample.class.getClassLoader().getResource("bid.csv").getPath();

        // 作为事件时间的字段必须是 timestamp 类型, 所以根据 long 类型的 ts 计算出来一个 t
        tEnv.executeSql("create table Bid(" +
                "bidtime TIMESTAMP(3)," +
                "price DECIMAL(10, 2), " +
                "item string," +
                "watermark for bidtime as bidtime - interval '1' second) " +
                "with("
                + "'connector' = 'filesystem',"
                + "'path' = 'file:///"+filePath+"',"
                + "'format' = 'csv'"
                + ")");

        tEnv.sqlQuery("SELECT " +
                                "  SESSION_START(bidtime, INTERVAL '3' minute) as wStart,  " +
                                "  SESSION_END(bidtime, INTERVAL '3' minute) as wEnd,  " +
                                "  SUM(price) sum_price " +
                                "FROM Bid " +
                                "GROUP BY SESSION(bidtime, INTERVAL '3' minute)"
                )
                .execute()
                .print();
    }
}

结果:

java 复制代码
+----+-------------------------+-------------------------+-----------+
| op |                  wStart |                    wEnd | sum_price |
+----+-------------------------+-------------------------+-----------+
| +I | 2021-04-15 08:05:00.000 | 2021-04-15 08:16:00.000 |     15.00 |
| +I | 2021-04-15 08:17:00.000 | 2021-04-15 08:20:00.000 |      6.00 |
+----+-------------------------+-------------------------+-----------+
2 rows in set

2.4 累计窗口(Comulate Windows flink1.13 版本新特性)

语法:

java 复制代码
CUMULATE(TABLE data, DESCRIPTOR(timecol), step, size)
TABLE 表名称
DESCRIPTOR 表中作为开窗的时间字段名称
step 大窗口的分割长度
size 指定最大的那个时间窗口

需求:10 分钟作为窗口,统计每隔两分钟的累计数(类似于中视频计划计算播放量完美累计曲线!)

java 复制代码
package cn.itcast.day02.Window;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

/**
 * @author lql
 * @time 2024-03-16 19:45:02
 * @description TODO
 */
public class GroupWindowsSqlCumulateExample {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

        String filePath = GroupWindowsSqlCumulateExample.class.getClassLoader().getResource("bid.csv").getPath();

        // 作为事件时间的字段必须是 timestamp 类型, 所以根据 long 类型的 ts 计算出来一个 t
        tEnv.executeSql("create table Bid(" +
                "bidtime TIMESTAMP(3)," +
                "price DECIMAL(10, 2), " +
                "item string," +
                "watermark for bidtime as bidtime - interval '1' second) " +
                "with("
                + "'connector' = 'filesystem',"
                + "'path' = 'file:///"+filePath+"',"
                + "'format' = 'csv'"
                + ")");

        tEnv.sqlQuery("SELECT window_start, window_end, SUM(price) as sum_price\n" +
                        "  FROM TABLE(\n" +
                        "    CUMULATE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '2' MINUTES, INTERVAL '10' MINUTES))\n" +
                        "  GROUP BY window_start, window_end"
                )
                .execute()
                .print();
    }
}

结果:

java 复制代码
+----+-------------------------+-------------------------+-----------+
| op |            window_start |              window_end | sum_price |
+----+-------------------------+-------------------------+-----------+
| +I | 2021-04-15 08:00:00.000 | 2021-04-15 08:06:00.000 |      4.00 |
| +I | 2021-04-15 08:00:00.000 | 2021-04-15 08:08:00.000 |      6.00 |
| +I | 2021-04-15 08:00:00.000 | 2021-04-15 08:10:00.000 |     11.00 |
| +I | 2021-04-15 08:10:00.000 | 2021-04-15 08:12:00.000 |      3.00 |
| +I | 2021-04-15 08:10:00.000 | 2021-04-15 08:14:00.000 |      4.00 |
| +I | 2021-04-15 08:10:00.000 | 2021-04-15 08:16:00.000 |      4.00 |
| +I | 2021-04-15 08:10:00.000 | 2021-04-15 08:18:00.000 |     10.00 |
| +I | 2021-04-15 08:10:00.000 | 2021-04-15 08:20:00.000 |     10.00 |
+----+-------------------------+-------------------------+-----------+
8 rows in set

3. 多维数据分析

3.1 GROUPING SETS

当前效果:

java 复制代码
SELECT window_start, 
		window_end,
		userId,
		category,
		sum(price) as sum_price
FROM TABLE(
   TUMBLE(TABLE orders, DESCRIPTOR(t), INTERVAL '5' SECONDS)) 
GROUP BY window_start, window_end, GROUPING SETS((userId, category), (userId), ()) 

以前效果:

JAVA 复制代码
// ()
SELECT window_start, window_end, 'NULL' as userId, 'NULL' as category, sum(price) as sum_price
FROM TABLE(
TUMBLE(TABLE orders, DESCRIPTOR(t), INTERVAL '5' SECONDS))
GROUP BY window_start, window_end
UNION ALL
// (userId)
SELECT window_start, window_end, userId as userId, 'NULL' as category, sum(price) as sum_price
FROM TABLE(
TUMBLE(TABLE orders, DESCRIPTOR(t), INTERVAL '5' SECONDS))
GROUP BY window_start, window_end, userId
UNION ALL
// (userId, category)
SELECT window_start, window_end,userId, category, sum(price) as sum_price
FROM TABLE(
TUMBLE(TABLE orders, DESCRIPTOR(t), INTERVAL '5' SECONDS))
GROUP BY window_start, window_end, userId, category

3.2 ROLLUP

速记:从右往左,全面到稀缺!

JAVA 复制代码
GROUP BY ROLLUP(a, b, c)
--等价于以下语句。
GROUPING SETS((a,b,c),(a,b),(a), ())

GROUP BY ROLLUP ( a, (b, c), d )
--等价于以下语句。
GROUPING SETS (
    ( a, b, c, d ),
    ( a, b, c    ),
    ( a          ),
    (            )
)

3.3 CUBE

速记:排列组合

java 复制代码
GROUP BY CUBE(a, b, c)
--等价于以下语句。
GROUPING SETS((a,b,c),(a,b),(a,c),(b,c),(a),(b),(c),())

GROUP BY CUBE ( (a, b), (c, d) )
--等价于以下语句。
GROUPING SETS (
    ( a, b, c, d ),
    ( a, b       ),
    (       c, d ),
    (            )
)

// CUBE 和 GROUPING SETS 组合,相当于排列组合基础上加上元素
GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
--等价于以下语句。
GROUP BY GROUPING SETS (
    (a, b, c, d), (a, b, c, e),
    (a, b, d),    (a, b, e),
    (a, c, d),    (a, c, e),
    (a, d),       (a, e)
)

3.4 GROUPING 和 GROUPING_ID

背景:GROUPING SETS 结果中使用 NULL 充当占位符,导致无法区分占位符 NULL 与数据中真正的 NULL。

3.4.1 GROUPING 函数
  • 接受一个列名作为参数
  • 返回0,意味着 无NULL / 来自输入数据(原本存在的空值)
  • 返回1,意味着 NULL 是 GROUPING SETS 的占位符。

实例:

sql 复制代码
SELECT  window_start, window_end, userId, category, 
		GROUPING(category) as categoryFlag,
		sum(price) as sum_price,
		IF(GROUPING(category) = 0, category, 'ALL') as `all`
FROM TABLE(
   		TUMBLE(TABLE orders, DESCRIPTOR(t), INTERVAL '5' SECONDS)) 
GROUP BY window_start, window_end, GROUPING SETS((userId, category), (userId))

结果:

window_start window_end userId category sum_price flag all
2021-05-23 05:16:35.000 2021-05-23 05:16:40.000 NULL NULL 10.1 1 ALL
2021-05-23 05:16:40.000 2021-05-23 05:16:45.000 NULL NULL 96.6 1 ALL
2021-05-23 05:16:45.000 2021-05-23 05:16:50.000 NULL NULL 15.6 1 ALL
2021-05-23 05:16:35.000 2021-05-23 05:16:40.000 user_001 电脑 10.1 0 电脑
2021-05-23 05:16:40.000 2021-05-23 05:16:45.000 user_001 手机 14.1 0 手机
2021-05-23 05:16:40.000 2021-05-23 05:16:45.000 user_002 手机 82.5 0 手机
2021-05-23 05:16:45.000 2021-05-23 05:16:50.000 user_001 电脑 15.6 0 电脑
2021-05-23 05:16:35.000 2021-05-23 05:16:40.000 user_001 NULL 10.1 1 ALL
2021-05-23 05:16:40.000 2021-05-23 05:16:45.000 user_001 NULL 14.1 1 ALL
2021-05-23 05:16:40.000 2021-05-23 05:16:45.000 user_002 NULL 82.5 1 ALL
2021-05-23 05:16:45.000 2021-05-23 05:16:50.000 user_001 NULL 15.6 1 ALL

3.4.2 GROUPING_ID(兼容 Hive)

MaxCompute还提供了无参数的 GROUPING__ID 函数,用于兼容Hive查询。

结果是将参数列的GROUPING结果按照BitMap的方式组成整数

MaxCompute 和 Hive 2.3.0 及以上版本兼容该函数,在Hive 2.3.0以下版本中该函数输出不一致,因此并不推荐使用此函数。

java 复制代码
SELECT
a,b,c ,
COUNT(*),
GROUPING_ID
FROM VALUES (1,2,3) as t(a,b,c)
GROUP BY a, b, c GROUPING SETS ((a,b,c), (a));

GROUPING_ID既无输入参数,也无括号。此表达方式在 MaxCompute 中等价于 GROUPING_ID(a,b,c),参数与 GROUP BY 的顺序一致。

3.5 Window Top-N

模板:计算每10分钟营业时间窗内销售额最高的前3名供应商。

SQL 复制代码
SELECT *
  FROM (
    SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY price DESC) as rownum
    FROM (
      SELECT window_start, window_end, supplier_id, SUM(price) as price, COUNT(*) as cnt
      FROM TABLE(
        TUMBLE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES))
      GROUP BY window_start, window_end, supplier_id
    )
) WHERE rownum <= 3;

思路:先算滚动时间 10 分钟,按照窗口时间,id 分组求和,再排序函数取前三。


4. Over Windows

4.1 ROWS OVER WINDOW

按照行进行划分:BETWEEN (UNBOUNDED | rowCount) PRECEDING AND CURRENT ROW

注解:如果不加 rowCount 相当于从以前到现在,加上 rowCount 相当于从前 n 行到现在!

数据源:

itemID itemType onSellTime price
ITEM001 Electronic 2021-05-11 10:01:00.000 20
ITEM002 Electronic 2021-05-11 10:02:00.000 50
ITEM003 Electronic 2021-05-11 10:03:00.000 30
ITEM004 Electronic 2021-05-11 10:03:00.000 60
ITEM005 Electronic 2021-05-11 10:05:00.000 40
ITEM006 Electronic 2021-05-11 10:06:00.000 20
ITEM007 Electronic 2021-05-11 10:07:00.000 70
ITEM008 Clothes 2021-05-11 10:08:00.000 20
ITEM009 Clothes 2021-05-11 10:09:00.000 40
ITEM010 Clothes 2021-05-11 10:11:00.000 30

示例:按照 itemType 分组,onSellTime 升序,求从以前到现在总金额

SQL 复制代码
select
    itemID,
    itemType,
    onSellTime,
    price,
    sum(price) over w as sumPrice
from tmall_item
    WINDOW w AS (
        PARTITION BY itemType 
        ORDER BY onSellTime 
        ROWS  BETWEEN UNBOUNDED preceding AND CURRENT ROW
    )

结果:

itemID itemType onSellTime price sumPrice
ITEM001 Electronic 2021-05-11 10:01:00.000 20.0 20.0
ITEM002 Electronic 2021-05-11 10:02:00.000 50.0 70.0
ITEM003 Electronic 2021-05-11 10:03:00.000 30.0 100.0
ITEM004 Electronic 2021-05-11 10:03:00.000 60.0 160.0
ITEM005 Electronic 2021-05-11 10:05:00.000 40.0 200.0
ITEM006 Electronic 2021-05-11 10:06:00.000 20.0 220.0
ITEM007 Electronic 2021-05-11 10:07:00.000 70.0 290.0
ITEM008 Clothes 2021-05-11 10:08:00.000 20.0 20.0
ITEM009 Clothes 2021-05-11 10:09:00.000 40.0 60.0
ITEM010 Clothes 2021-05-11 10:11:00.000 30.0 90.0

4.2 RANGE OVER WINDOW

按照时间进行划分:ROWS BETWEEN ( UNBOUNDED | rowCount ) preceding AND CURRENT ROW

例子:实时统计两分钟内金额

java 复制代码
select
    itemID,
    itemType,
    onSellTime,
    price,
    sum(price) over w as sumPrice
from tmall_item
    WINDOW w AS (
        PARTITION BY itemType
        ORDER BY onSellTime
        RANGE BETWEEN INTERVAL '2' MINUTE preceding AND CURRENT ROW
    )

5. TableAPI 窗口的定义

5.1.1 滚动窗口

Tumble 类方法:

  • over:定义窗口长度
  • on:用来分组(按时间间隔)或者排序(按行数)的时间字段
  • as:别名,必须出现在后面的groupBy中

例子:每隔5秒钟统计一次每个商品类型的销售总额

java 复制代码
public class GroupWindowsTableApiTumbleExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<OrderInfo> dataStream = env
                .fromElements(
                        new OrderInfo("电脑", 1000L, 100D),
                        new OrderInfo("手机", 2000L, 200D),
                        new OrderInfo("电脑", 3000L, 300D),
                        new OrderInfo("手机", 4000L, 400D),
                        new OrderInfo("手机", 5000L, 500D),
                        new OrderInfo("电脑", 6000L, 600D))
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<OrderInfo>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                                .withTimestampAssigner((element, recordTimestamp) -> element.getTimestamp())
                );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        Table table = tableEnv
                .fromDataStream(dataStream, $("category"), $("timestamp").rowtime(), $("money"));

        table
                .window(Tumble.over(lit(5).second())
                        .on($("timestamp")).as("w"))  // 定义滚动窗口并给窗口起一个别名
                .groupBy($("category"), 
                         $("w")) // 窗口必须出现的分组字段中
                .select($("category"), 
                        $("w").start().as("window_start"), 
                        $("w").end().as("window_end"), 
                        $("money").sum().as("total_money"))
                .execute()
                .print();

        env.execute();
    }

    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class OrderInfo {
        private String category;
        private Long timestamp;
        private Double money;
    }
}

5.1.2 滑动窗口

Slide 类方法:

  • over:定义窗口长度
  • every:定义滑动步长
  • on:用来分组(按时间间隔)或者排序(按行数)的时间字段
  • as:别名,必须出现在后面的groupBy中

例子:每隔5秒钟统计过去10秒钟每个商品类型的销售总额

java 复制代码
public class GroupWindowsTableApiTumbleExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<OrderInfo> dataStream = env
                .fromElements(
                        new OrderInfo("电脑", 1000L, 100D),
                        new OrderInfo("手机", 2000L, 200D),
                        new OrderInfo("电脑", 3000L, 300D),
                        new OrderInfo("手机", 4000L, 400D),
                        new OrderInfo("手机", 5000L, 500D),
                        new OrderInfo("电脑", 6000L, 600D))
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<OrderInfo>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                                .withTimestampAssigner((element, recordTimestamp) -> element.getTimestamp())
                );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        Table table = tableEnv
                .fromDataStream(dataStream, $("category"), $("timestamp").rowtime(), $("money"));

        table
                .window(Slide.over(lit(10).second())
                        .every(lit(5).second())
                        .on($("timestamp"))
                        .as("w"))  // 定义滚动窗口并给窗口起一个别名
                .groupBy($("category"), 
                         $("w")) // 窗口必须出现的分组字段中
                .select($("category"), 
                        $("w").start().as("window_start"), 
                        $("w").end().as("window_end"), 
                        $("money").sum().as("total_money"))
                .execute()
                .print();

        env.execute();
    }

    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class OrderInfo {
        private String category;
        private Long timestamp;
        private Double money;
    }
}

5.1.3 会话窗口

Session 类方法:

  • withGap:会话时间间隔
  • on:用来分组(按时间间隔)或者排序(按行数)的时间字段
  • as:别名,必须出现在后面的groupBy中

例子:两次的时间间隔超过6秒的基础上,没有新的订单事件这个窗口就会关闭,然后处理这个窗口区间内所产生的订单数据计算

JAVA 复制代码
public class GroupWindowsTableApiTumbleExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<OrderInfo> dataStream = env
                .fromElements(
                        new OrderInfo("电脑", 1000L, 100D),
                        new OrderInfo("手机", 2000L, 200D),
                        new OrderInfo("电脑", 3000L, 300D),
                        new OrderInfo("手机", 4000L, 400D),
                        new OrderInfo("手机", 5000L, 500D),
                        new OrderInfo("电脑", 6000L, 600D))
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<OrderInfo>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                                .withTimestampAssigner((element, recordTimestamp) -> element.getTimestamp())
                );

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        Table table = tableEnv
                .fromDataStream(dataStream, $("category"), $("timestamp").rowtime(), $("money"));

        table
                .window(Session.withGap(lit(6).second())
                        .on($("timestamp"))
                        .as("w"))  // 定义滚动窗口并给窗口起一个别名
                .groupBy($("category"), 
                         $("w")) // 窗口必须出现的分组字段中
                .select($("category"), 
                        $("w").start().as("window_start"), 
                        $("w").end().as("window_end"), 
                        $("money").sum().as("total_money"))
                .execute()
                .print();

        env.execute();
    }

    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class OrderInfo {
        private String category;
        private Long timestamp;
        private Double money;
    }
}

相关推荐
铅华尽27 分钟前
Nginx学习笔记
笔记·学习·nginx
Zda天天爱打卡31 分钟前
【趣学SQL】第五章:性能优化与调优 5.2 数据库调优——让MySQL跑得比双十一快递还快的终极秘籍
数据库·sql·性能优化
黄雪超38 分钟前
深入MapReduce——计算模型设计
大数据·hadoop·mapreduce
安和昂1 小时前
effective-Objective-C 第四章阅读笔记
网络·笔记·objective-c
烟锁迷城2 小时前
软考中级 软件设计师 第一章 第十节 可靠性
笔记
胡楚昊2 小时前
B站pwn教程笔记-1
笔记
forestsea3 小时前
【Elasticsearch】聚合分析:度量聚合
大数据·elasticsearch·搜索引擎
小石潭记丶3 小时前
ES设置证书和创建用户,kibana连接es
大数据·elasticsearch·jenkins
怎么才能努力学习啊6 小时前
Hive之加载csv格式数据到hive
数据仓库·hive·hadoop
Bunny02127 小时前
SpringMVC笔记
java·redis·笔记