mmdetection计算参数量和计算复杂度

参数量与图片尺寸无关

而计算复杂度(GFlops)与输入图片的尺寸有关,作比较的时候要确保,输入尺寸一致的,最新版本的mmdetection的tools/analysis_tools/get_flops.py中不支持更改输入图片尺寸,而是自己从数据集中获取大小,想要自定义输入尺寸可以按如下操作:

①找到.conda/envs/mmlab/lib/python3.8/site-packages/mmengine/analysis/print_helper.py文件

②在677行get_model_complexity_info函数的最开始加上以下两句

input_shape=(3,640,640)

inputs=None

相关推荐
weixin_395448912 分钟前
排查流程啊啊啊
人工智能·深度学习·机器学习
Acrelhuang14 分钟前
独立监测 + 集团管控 安科瑞连锁餐饮能源方案全链路提效-安科瑞黄安南
人工智能
laplace012324 分钟前
Clawdbot 部署到飞书(飞连)使用教程(完整版)
人工智能·笔记·agent·rag·clawdbot
是小蟹呀^25 分钟前
卷积神经网络(CNN):卷积操作
人工智能·神经网络·cnn
DN202038 分钟前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu1 小时前
【机器学习教程】第02章:线性代数基础【下】
学习·机器学习
pen-ai1 小时前
【YOLO系列】 YOLOv1 目标检测算法原理详解
算法·yolo·目标检测
爱喝可乐的老王1 小时前
PyTorch简介与安装
人工智能·pytorch·python
deephub1 小时前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型