mmdetection计算参数量和计算复杂度

参数量与图片尺寸无关

而计算复杂度(GFlops)与输入图片的尺寸有关,作比较的时候要确保,输入尺寸一致的,最新版本的mmdetection的tools/analysis_tools/get_flops.py中不支持更改输入图片尺寸,而是自己从数据集中获取大小,想要自定义输入尺寸可以按如下操作:

①找到.conda/envs/mmlab/lib/python3.8/site-packages/mmengine/analysis/print_helper.py文件

②在677行get_model_complexity_info函数的最开始加上以下两句

input_shape=(3,640,640)

inputs=None

相关推荐
水如烟21 分钟前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然27 分钟前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~28 分钟前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
岁月宁静32 分钟前
当 AI 越来越“聪明”,人类真正的护城河是什么:智商、意识与认知主权
人工智能
CareyWYR35 分钟前
每周AI论文速递(260105-260109)
人工智能
智能相对论1 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
齐齐大魔王1 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
程途拾光1581 小时前
幻觉抑制:检索增强生成(RAG)的优化方向
人工智能
野豹商业评论1 小时前
千问发力:“AI家教”开始抢教培生意?
人工智能
程序员佳佳1 小时前
【万字硬核】从零构建企业级AI中台:基于Vector Engine整合GPT-5.2、Sora2与Veo3的落地实践指南
人工智能·gpt·chatgpt·ai作画·aigc·api·ai编程