mmdetection计算参数量和计算复杂度

参数量与图片尺寸无关

而计算复杂度(GFlops)与输入图片的尺寸有关,作比较的时候要确保,输入尺寸一致的,最新版本的mmdetection的tools/analysis_tools/get_flops.py中不支持更改输入图片尺寸,而是自己从数据集中获取大小,想要自定义输入尺寸可以按如下操作:

①找到.conda/envs/mmlab/lib/python3.8/site-packages/mmengine/analysis/print_helper.py文件

②在677行get_model_complexity_info函数的最开始加上以下两句

input_shape=(3,640,640)

inputs=None

相关推荐
Elastic 中国社区官方博客1 小时前
Elasticsearch MCP 服务器:与你的 Index 聊天
大数据·服务器·人工智能·elasticsearch·搜索引擎·ai·全文检索
virtual_k1smet3 小时前
#等价于e * d ≡ 1 mod φ(n) #模逆元详解
人工智能·算法·机器学习
可触的未来,发芽的智生4 小时前
新奇特:神经网络的集团作战思维,权重共享层的智慧
人工智能·python·神经网络·算法·架构
H3C-Navigator4 小时前
HRPC在Polaris存储系统中的应用
网络·人工智能·ai-native
智慧地球(AI·Earth)4 小时前
智能体版中科院学术GPT上线内测!AI与科研的深度碰撞
人工智能·gpt·科研助手·学术智能体
文火冰糖的硅基工坊4 小时前
[创业之路-653]:社会产品与服务的分类
大数据·数据库·人工智能
StarPrayers.4 小时前
基于PyTorch的CIFAR10加载与TensorBoard可视化实践
人工智能·pytorch·python·深度学习·机器学习
肖书婷5 小时前
人工智能-机器学习day4
人工智能·机器学习
Sui_Network5 小时前
CUDIS 健康协议在 Sui 上打造更健康的未来
人工智能·科技·web3·去中心化·区块链
飞哥数智坊5 小时前
Claude 4.5 升级解析:很强,但请别跳过“Imagine”
人工智能·ai编程·claude